Do you want to publish a course? Click here

Valence-Quark Distribution of the Kaon and Pion from Lattice QCD

114   0   0.0 ( 0 )
 Added by Huey-Wen Lin
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We present the first lattice-QCD calculation of the kaon valence-quark distribution functions using the large-momentum effective theory (LaMET) approach. The calculation is performed with multiple pion masses with the lightest one around 220 MeV, 2 lattice spacings $a=0.06$ and 0.12 fm, $(M_pi)_text{min} L approx 5.5$, and high statistics ranging from 11,600 to 61,312 measurements. We also calculate the valence-quark distribution of pion and find it to be consistent with the FNAL E615 experimental results, and our ratio of the $u$ quark PDF in the kaon to that in the pion agrees with the CERN NA3 experiment. We also make predictions of the strange-quark distribution of the kaon.



rate research

Read More

We present the first exploratory lattice QCD calculation of the pion valence quark distribution extracted from spatially separated current-current correlations in coordinate space. We show that an antisymmetric combination of vector and axial-vector currents provides direct information on the pion valence quark distribution. Using the collinear factorization approach, we calculate the perturbative tree-level kernel for this current combination and extract the pion valence distribution. The main goal of this article is to demonstrate the efficacy of this general lattice QCD approach in the reliable extraction of parton distributions. With controllable power corrections and a good understanding of the lattice systematics, this method has the potential to serve as a complementary to the many efforts to extract parton distributions in global analyses from experimentally measured cross sections. We perform our calculation on an ensemble of 2+1 flavor QCD using the isotropic-clover fermion action, with lattice dimensions $32^3times 96$ at a lattice spacing mbox{$a=0.127$ fm} and the quark mass equivalent to a pion mass $m_pi simeq 416$ MeV.
We extract the pion valence quark distribution $q^pi_{rm v}(x)$ from lattice QCD (LQCD) calculated matrix elements of spacelike correlations of one vector and one axial vector current analyzed in terms of QCD collinear factorization, using a new short-distance matching coefficient calculated to one-loop accuracy. We derive the Ioffe time distribution of the two-current correlations in the physical limit by investigating the finite lattice spacing, volume, quark mass, and higher-twist dependencies in a simultaneous fit of matrix elements computed on four gauge ensembles. We find remarkable consistency between our extracted $q^pi_{rm v}(x)$ and that obtained from experimental data across the entire $x$-range. Further, we demonstrate that the one-loop matching coefficient relating the LQCD matrix computed in position space to the $q_{rm v}^{pi}(x)$ in momentum space has well-controlled behavior with Ioffe time. This justifies that LQCD calculated current-current correlations are good observables for extracting partonic structures by using QCD factorization, which complements to the global effort to extract partonic structure from experimental data.
120 - Zhouyou Fan , Huey-Wen Lin 2021
We present the first determination of the $x$-dependent pion gluon distribution from lattice QCD using the pseudo-PDF approach. We use lattice ensembles with 2+1+1 flavors of highly improved staggered quarks (HISQ), generated by MILC Collaboration, at two lattice spacings $aapprox 0.12$ and 0.15~fm and three pion masses $M_piapprox 220$, 310 and 690 MeV. We use clover fermions for the valence action and momentum smearing to achieve pion boost momentum up to 2.29 GeV. We find that the dependence of the pion gluon parton distribution on lattice spacing and pion mass is mild. We compare our results from the lightest pion mass ensemble with the determination by JAM and xFitter global fits.
We present lattice results on the valence-quark structure of the pion using a coordinate space method within the framework of Large Momentum Effective Theory (LaMET). In this method one relies on the matrix elements of a Euclidean correlator in boosted hadronic states, which have an operator product expansion at short distance that allows us to extract the moments of PDFs. We renormalize the Euclidean correlator by forming the reduced Ioffe-time distribution (rITD), and reconstruct the second and fourth moments of the pion PDF by taking into account of QCD evolution effects.
We present a high-statistics lattice QCD determination of the valence parton distribution function (PDF) of the pion, with a mass of 300 MeV, using two very fine lattice spacings of $a=0.06$ fm and 0.04 fm. We reconstruct the $x$-dependent PDF, as well as infer the first few even moments of the PDF using leading-twist 1-loop perturbative matching framework. Our analyses use both RI-MOM and ratio-based schemes to renormalize the equal-time bi-local quark-bilinear matrix elements of pions boosted up to 2.4 GeV momenta. We use various model-independent and model-dependent analyses to infer the large-$x$ behavior of the valence PDF. We also present technical studies on lattice spacing and higher-twist corrections present in the boosted pion matrix elements.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا