Do you want to publish a course? Click here

Reconstructing parton distribution functions from Ioffe time data: from Bayesian methods to Neural Networks

425   0   0.0 ( 0 )
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

The computation of the parton distribution functions (PDF) or distribution amplitudes (DA) of hadrons from first principles lattice QCD constitutes a central open problem. In this study, we present and evaluate the efficiency of a selection of methods for inverse problems to reconstruct the full $x$-dependence of PDFs. Our starting point are the so called Ioffe time PDFs, which are accessible from Euclidean time calculations in conjunction with a matching procedure. Using realistic mock data tests, we find that the ill-posed incomplete Fourier transform underlying the reconstruction requires careful regularization, for which both the Bayesian approach as well as neural networks are efficient and flexible choices.



rate research

Read More

We present results for the unpolarized parton distribution function of the nucleon computed in lattice QCD at the physical pion mass. This is the first study of its kind employing the method of Ioffe time pseudo-distributions. Beyond the reconstruction of the Bjorken-$x$ dependence we also extract the lowest moments of the distribution function using the small Ioffe time expansion of the Ioffe time pseudo-distribution. We compare our findings with the pertinent phenomenological determinations.
We present a new method, based on Gaussian process regression, for reconstructing the continuous $x$-dependence of parton distribution functions (PDFs) from quasi-PDFs computed using lattice QCD. We examine the origin of the unphysical oscillations seen in current lattice calculations of quasi-PDFs and develop a nonparametric fitting approach to take the required Fourier transform. The method is tested on one ensemble of maximally twisted mass fermions with two light quarks. We find that with our approach oscillations of the quasi-PDF are drastically reduced. However, the final effect on the light-cone PDFs is small. This finding suggests that the deviation seen between current lattice QCD results and phenomenological determinations cannot be attributed solely on the Fourier transform.
We present a calculation of the pion valence quark distribution extracted using the formalism of reduced Ioffe time pseudo-distributions or more commonly known as pseudo-PDFs. Our calculation is carried out on two different 2+1 flavor QCD ensembles using the isotropic-clover fermion action, with lattice dimensions $24^3times 64$ and $32^3times 96$ at the lattice spacing of $a=0.127$ fm, and with the quark mass equivalent to a pion mass of $m_pi simeq 415$ MeV. We incorporate several combinations of smeared-point and smeared-smeared pion source-sink interpolation fields in obtaining the lattice QCD matrix elements using the summation method. After one-loop perturbative matching and combining the pseudo-distributions from these two ensembles, we extract the pion valence quark distribution using a phenomenological functional form motivated by the global fits of parton distribution functions. We also calculate the lowest four moments of the pion quark distribution through the OPE without OPE. We present a qualitative comparison between our lattice QCD extraction of the pion valence quark distribution with that obtained from global fits and previous lattice QCD calculations.
We present the first direct calculation of the transversity parton distribution function within the nucleon from lattice QCD. The calculation is performed using simulations with the light quark mass fixed to its physical value and at one value of the lattice spacing. Novel elements of the calculations are non-perturbative renormalization and extraction of a formula for the matching to light-cone PDFs. Final results are presented in the $overline{rm MS}$ scheme at a scale of $sqrt{2}$ GeV.
We present results on the quark unpolarized, helicity and transversity parton distributions functions of the nucleon. We use the quasi-parton distribution approach within the lattice QCD framework and perform the computation using an ensemble of twisted mass fermions with the strange and charm quark masses tuned to approximately their physical values and light quark masses giving pion mass of 260 MeV. We use hierarchical probing to evaluate the disconnected quark loops. We discuss identification of ground state dominance, the Fourier transform procedure and convergence with the momentum boost. We find non-zero results for the disconnected isoscalar and strange quark distributions. The determination of the quark parton distribution and in particular the strange quark contributions that are poorly known provide valuable input to the structure of the nucleon.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا