Do you want to publish a course? Click here

CP-violating Higgs-gauge boson couplings in $H u bar{ u}$ production at three energy stages of CLIC

72   0   0.0 ( 0 )
 Added by Abdulkadir Senol
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

A phenomenological study of CP-violating dimension-six operators via the $e^+e^-to u bar{ u} H$ process is performed in a model-independent Standard Model effective field theory framework at all energy stages of CLIC using the updated baseline integrated luminosities. All signal and relevant background events are generated in MadGraph and passed through PYTHIA for parton showering and hadronization at parton level. Detector effects are considered via tuned CLIC detector cards in Delphes. Since we reconstruct the Higgs boson from a pair of b-jets, limits on CP-violating dimension-six couplings are obtained at three $b$-tagging working points: tight, medium and loose defined in the CLIC Delphes card for all three energy stages of CLIC. Our best 95 % C.L. limits at the loose working point (90 % b-tagging efficiency) on $tilde c_{HW}$ and $tilde c_{HB}$ are $[-7.0times10^{-3};7.0times10^{-3}]$ and $[-3.0times10^{-2};3.0times10^{-2}]$, respectively at the 3 TeV energy stage of CLIC with an integrated luminosity of 5.0 ab$^{-1}$. Considering a 0.3 % systematic uncertainty from possible experimental sources worsens the limits on these couplings by a factor of two.



rate research

Read More

In these proceedings, we present results for Higgs production at the LHC via gluon fusion with triple real emission corrections and the validity range of the heavy-top effective theory approximation for this process. For a general CP-violating Higgs boson, we show that bottom-quark loop corrections in combination with large values of $tan beta $ significantly distort differential distributions.
We comprehensively study the charged-Higgs contributions to the leptonic $B^-_q to ell bar u$ ($q=u,c$) and semileptonic $bar B to X_q ell bar u$ ($X_u=pi, rho; X_c=D,D^*$) decays in the type-III two-Higgs-doublet model (2HDM). We employ the Cheng-Sher ansatz to suppress the tree-level flavor-changing neutral currents (FCNCs) in the quark sector. When the strict constraints from the $Delta B=2$ and $bto s gamma$ processes are considered, parameters $chi^u_{tq}$ from the quark couplings and $chi^ell_ell$ from the lepton couplings dictate the leptonic and semileptonic $B$ decays. It is found that when the measured $B^-_uto tau bar u$ and indirect bound of $B^-_c to tau bar u$ obtained by LEP1 data are taken into account, $R(D)$ and $R(pi)$ can have broadly allowed ranges; however, the values of $R(rho)$ and $R(D^*)$ are limited to approximately the standard model (SM) results. We also find that the same behaviors also occur in the $tau$-lepton polarizations and forward-backward asymmetries ($A^{X_q,tau}_{FB}$) of the semileptonic decays, with the exception of $A^{D^*,tau}_{FB}$, for which the deviation from the SM due to the charged-Higgs effect is still sizable. In addition, the $q^2$-dependent $A^{pi,tau}_{FB}$ and $A^{D,tau}_{FB}$ can be very sensitive to the charged-Higgs effects and have completely different shapes from the SM.
In the framework of effective Lagrangians with the SU(2)_L x U(1)_Y symmetry linearly realized, modifications of the couplings of the Higgs field to the electroweak gauge bosons are related to anomalous triple gauge couplings (TGCs). Here, we show that the analysis of the latest Higgs boson production data at the LHC and Tevatron give rise to strong bounds on TGCs that are complementary to those from direct TGC analysis. We present the constraints on TGCs obtained by combining all available data on direct TGC studies and on Higgs production analysis. Note added: The analysis has been updated with all the public data available as November 2013. Updates of this analysis are provided at http://hep.if.usp.br/Higgs
The Compact Linear Collider (CLIC) is a future electron-positron collider that will allow measurement of the trilinear Higgs self-coupling in double Higgs boson events produced at its high-energy stages with collision energies of $sqrt{s}$ = 1.5 and 3 TeV. The sensitivity to the Higgs self-coupling is driven by the measurements of the cross section and the invariant mass distribution of the Higgs-boson pair in the W-boson fusion process, e$^+$e$^-to$HH$ u_e bar{ u}_e$. It is enhanced by including the cross-section measurement of ZHH production at 1.5 TeV. The expected sensitivity of CLIC for Higgs pair production through W-boson fusion is studied for the decay channels bbbb and bbWW using full detector simulation including all relevant backgrounds. With an integrated luminosity of $mathcal{L}$ = 5 ab$^{-1}$ at $sqrt{s}$ = 3 TeV, CLIC will be able to measure the trilinear Higgs self-coupling with a relative uncertainty of $-8,%$ and $+11,%$ at $68,%$ C.L., assuming the Standard Model.
74 - T. Barklow , U. Baur , F. Cuypers 1996
The measurement of anomalous gauge boson self couplings is reviewed for a variety of present and planned accelerators. Sensitivities are compared for these accelerators using models based on the effective Lagrangian approach. The sensitivities described here are for measurement of generic parameters kappa_v, lambda_v, etc., defined in the text. Pre-LHC measurements will not probe these couplings to precision better than O(1/10). The LHC should be sensitive to better than O(1/100), while a future NLC should achieve sensitivity of O(1/1000) to O(1/10000) for center of mass energies ranging from 0.5 to 1.5 TeV.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا