In the framework of effective Lagrangians with the SU(2)_L x U(1)_Y symmetry linearly realized, modifications of the couplings of the Higgs field to the electroweak gauge bosons are related to anomalous triple gauge couplings (TGCs). Here, we show that the analysis of the latest Higgs boson production data at the LHC and Tevatron give rise to strong bounds on TGCs that are complementary to those from direct TGC analysis. We present the constraints on TGCs obtained by combining all available data on direct TGC studies and on Higgs production analysis. Note added: The analysis has been updated with all the public data available as November 2013. Updates of this analysis are provided at http://hep.if.usp.br/Higgs
We present the results obtained by the Triple Gauge Couplings working group during the LEP2 Workshop (1994-1995). The report concentrates on the measurement of $WWgamma$ and $WWZ$ couplings in $e^-e^+to W^-W^+$ or, more generally, four-fermion production at LEP2. In addition the detection of new interactions in the bosonic sector via other production channels is discussed.
The measurement of anomalous gauge boson self couplings is reviewed for a variety of present and planned accelerators. Sensitivities are compared for these accelerators using models based on the effective Lagrangian approach. The sensitivities described here are for measurement of generic parameters kappa_v, lambda_v, etc., defined in the text. Pre-LHC measurements will not probe these couplings to precision better than O(1/10). The LHC should be sensitive to better than O(1/100), while a future NLC should achieve sensitivity of O(1/1000) to O(1/10000) for center of mass energies ranging from 0.5 to 1.5 TeV.
We consider the triple coupling of the Higgs boson in the context of the gauge-Higgs unification scenario. We show that the triple coupling of the Higgs boson in this scenario generically deviates from SM prediction since the Higgs potential in this scenario has a periodicity. We calculate the coupling in the five-dimensional $SU(3)$ x $U(1)_X$ gauge-Higgs unification model and obtain 70% deviation from the SM prediction.
In these proceedings I explore one aspect of gauge-boson physics at the LHC - Triple Gauge-boson Couplings (TGCs) in $WZ$ and Wgamma production. Methods for extracting confidence limits on anomalous TGCs are assessed, while accounting for the effects of higher order QCD corrections and contributions from other theoretical and detector related systematics. Detector response has been parametrised according to the ATLAS detectors specifications. A strategy for reporting the anomalous coupling limits is introduced which removes the ambiguities of form factors by reporting the limits as a function of a cutoff operating on the diboson system invariant mass. Techniques for measuring the energy dependence of anomalous couplings are demonstrated.
A phenomenological study of CP-violating dimension-six operators via the $e^+e^-to u bar{ u} H$ process is performed in a model-independent Standard Model effective field theory framework at all energy stages of CLIC using the updated baseline integrated luminosities. All signal and relevant background events are generated in MadGraph and passed through PYTHIA for parton showering and hadronization at parton level. Detector effects are considered via tuned CLIC detector cards in Delphes. Since we reconstruct the Higgs boson from a pair of b-jets, limits on CP-violating dimension-six couplings are obtained at three $b$-tagging working points: tight, medium and loose defined in the CLIC Delphes card for all three energy stages of CLIC. Our best 95 % C.L. limits at the loose working point (90 % b-tagging efficiency) on $tilde c_{HW}$ and $tilde c_{HB}$ are $[-7.0times10^{-3};7.0times10^{-3}]$ and $[-3.0times10^{-2};3.0times10^{-2}]$, respectively at the 3 TeV energy stage of CLIC with an integrated luminosity of 5.0 ab$^{-1}$. Considering a 0.3 % systematic uncertainty from possible experimental sources worsens the limits on these couplings by a factor of two.