Do you want to publish a course? Click here

Double Higgs boson production and Higgs self-coupling extraction at CLIC

124   0   0.0 ( 0 )
 Added by Ulrike Schnoor
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

The Compact Linear Collider (CLIC) is a future electron-positron collider that will allow measurement of the trilinear Higgs self-coupling in double Higgs boson events produced at its high-energy stages with collision energies of $sqrt{s}$ = 1.5 and 3 TeV. The sensitivity to the Higgs self-coupling is driven by the measurements of the cross section and the invariant mass distribution of the Higgs-boson pair in the W-boson fusion process, e$^+$e$^-to$HH$ u_e bar{ u}_e$. It is enhanced by including the cross-section measurement of ZHH production at 1.5 TeV. The expected sensitivity of CLIC for Higgs pair production through W-boson fusion is studied for the decay channels bbbb and bbWW using full detector simulation including all relevant backgrounds. With an integrated luminosity of $mathcal{L}$ = 5 ab$^{-1}$ at $sqrt{s}$ = 3 TeV, CLIC will be able to measure the trilinear Higgs self-coupling with a relative uncertainty of $-8,%$ and $+11,%$ at $68,%$ C.L., assuming the Standard Model.



rate research

Read More

In this work we explore the sensitivity to the Higgs self-coupling $lambda$ in the production of two Higgs bosons via vector boson scattering at the LHC. Although these production channels, concretely $W^+W^- to HH$ and $ ZZ to HH$, have lower rates than gluon-gluon fusion, they benefit from being tree level processes, being independent of top physics and having very distinctive kinematics that allow to obtain very clean experimental signatures. This makes them competitive channels concerning the sensitivity to the Higgs self-coupling. In order to give predictions for the sensitivity to this coupling, we first study the role of $lambda$ at the subprocess level, both in and beyond the Standard Model, to move afterwards to the LHC scenario. We characterize the $ppto HHjj$ case first and then provide quantitative results for the values of $lambda$ that can be probed at the LHC in vector boson scattering processes after considering the Higgs boson decays. We focus mainly in $ppto bbar{b}bbar{b}jj$, since it has the largest signal rates, and also comment on the potential of other channels, such as $ppto bbar{b}gammagamma jj$, as they lead to cleaner, although smaller, signals. Our whole study is performed for a center of mass energy of $sqrt{s}=14$ TeV and for various future expected LHC luminosities.
We set constraints on the trilinear Higgs boson self-coupling, $lambda_3$, by combining the information coming from the $W$ mass and leptonic effective Weinberg angle, electroweak precision observables, with the single Higgs boson analyses targeting the $gamma gamma,, ZZ^*,, WW^*, ,tau^+ tau^-$ and $bar{b} b$ decay channels and the double Higgs boson analyses in the $bbar{b}bbar{b}, , bbar{b}b tau^+ tau^-$ and $bbar{b}b gamma gamma$ decay channels, performed by the ATLAS collaboration. With the assumption that the new physics affects only the Higgs potential, values outside the interval $ -1.8, lambda_3^{rm SM} < lambda_3 < 9.2 , lambda_3^{rm SM}$ are excluded at $95%$ confidence level. With respect to similar analyses that do not include the information coming from the electroweak precision observables our analysis shows a stronger constraint on both positive and negative values of $lambda_3$.
We analyzed the triple Higgs boson self-coupling at future $e^{+}e^{-}$ colliders energies, with the reactions $e^{+}e^{-}to b bar b HH, t bar t HH$. We evaluate the total cross-sections for both $bbar bHH$ and $tbar tHH$, and calculate the total number of events considering the complete set of Feynman diagrams at tree-level. We vary the triple coupling $kappalambda_{3H}$ within the range $kappa=-1$ and +2. The numerical computation is done for the energies expected to be available at a possible Future Linear $e^{+}e^{-}$ Collider with a center-of-mass energy $800, 1000, 1500$ $GeV$ and a luminosity 1000 $fb^{-1}$. Our analysis is also extended to a center-of-mass energy 3 $TeV$ and luminosities of 1000 $fb^{-1}$ and 5000 $fb^{-1}$. We found that for the process $e^{+}e^{-}to b bar b HH$, the complete calculation differs only by 3% from the approximate calculation $e^{+}e^{-}to ZHH(Zto bbar b)$, while for the process $e^{+}e^{-}to t bar tHH$, the expected number of events, considering the decay products of both $t$ and $H$, is not enough to obtain an accurate determination of the triple Higgs boson self-coupling.
We study pair-production as well as the triple self-couplings of the neutral Higgs bosons of the Minimal Supersymmetric Standard Model (MSSM) at the Future International Linear $e^{+}e^{-}$ Collider (ILC) and Compact Linear Collider (CLIC). The analysis is based on the reactions $e^{+}e^{-}to b bar b h_ih_i, t bar t h_ih_i$ with $h_i=h, H, A$. We evaluate the total cross-section for both $bbar bh_ih_i$, $tbar th_ih_i$ and calculate the total number of events considering the complete set of Feynman diagrams at tree-level. We vary the triple couplings $kappalambda_{hhh}$, $kappalambda_{Hhh}$, $kappalambda_{hAA}$, $kappalambda_{HAA}$, $kappalambda_{hHH}$ and $kappalambda_{HHH}$ within the range $kappa=-1$ and +2. The numerical computation is done for the energies expected at the ILC with a center-of-mass energy 500, 1000, 1600 $GeV$ and a luminosity 1000 $fb^{-1}$. The channels $e^{+}e^{-}to b bar b h_ih_i$ and $e^{+}e^{-}to t bar t h_ih_i$ are also discussed to a center-of-mass energy of 3 $TeV$ and luminosities of 1000 $fb^{-1}$ and 5000 $fb^{-1}$.
The Compact Linear Collider (CLIC) is an option for a future e+e- collider operating at centre-of-mass energies up to 3 TeV, providing sensitivity to a wide range of new physics phenomena and precision physics measurements at the energy frontier. This paper is the first comprehensive presentation of the Higgs physics reach of CLIC operating at three energy stages: sqrt(s) = 350 GeV, 1.4 TeV and 3 TeV. The initial stage of operation allows the study of Higgs boson production in Higgsstrahlung (e+e- -> ZH) and WW-fusion (e+e- -> Hnunu), resulting in precise measurements of the production cross sections, the Higgs total decay width Gamma_H, and model-independent determinations of the Higgs couplings. Operation at sqrt(s) > 1 TeV provides high-statistics samples of Higgs bosons produced through WW-fusion, enabling tight constraints on the Higgs boson couplings. Studies of the rarer processes e+e- -> ttH and e+e- -> HHnunu allow measurements of the top Yukawa coupling and the Higgs boson self-coupling. This paper presents detailed studies of the precision achievable with Higgs measurements at CLIC and describes the interpretation of these measurements in a global fit.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا