Do you want to publish a course? Click here

Probing the role of proton cross-shell excitations in 70Ni using nucleon knockout reactions

353   0   0.0 ( 0 )
 Added by Alexandra Gade
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

The neutron-rich Ni isotopes have attracted attention in recent years due to the occurrence of shape or configuration coexistence. We report on the difference in population of excited final states in 70Ni following gamma-ray tagged one-proton, one-neutron, and two-proton knockout from 71Cu, 71Ni, and 72Zn rare-isotope beams, respectively. Using variations observed in the relative transition intensities, signaling the changed population of specific final states in the different reactions, the role of neutron and proton configurations in excited states of 70Ni is probed schematically, with the goal of identifying those that carry, as leading configuration, proton excitations across the Z = 28 shell closure. Such states are suggested in the literature to form a collective structure associated with prolate deformation. Adding to the body of knowledge for 70Ni, 29 new transitions are reported, of which 15 are placed in its level scheme.



rate research

Read More

The two-proton knockout reaction $^9$Be($^{54}$Ti,$^{52}$Ca$ + gamma$) has been studied at 72 MeV/nucleon. Besides the strong feeding of the $^{52}$Ca ground state, the only other sizeable cross section proceeds to a 3$^-$ level at 3.9 MeV. There is no measurable direct yield to the first excited 2$^+$ state at 2.6 MeV. The results illustrate the potential of such direct reactions for exploring cross-shell proton excitations in neutron-rich nuclei and confirms the doubly-magic nature of $^{52}$Ca.
The reaction 54Fe(d_pol,p)55Fe was studied at the Munich Q3D spectrograph with a 14 MeV polarized deuteron beam. Excitation energies, angular distributions and analyzing powers were measured for 39 states up to 4.5 MeV excitation energy. Spin and parity assignments were made and spectroscopic factors deduced by comparison to DWBA calculations. The results were compared to predictions by large scale shell model calculations in the full pf-shell and it was found that reasonable agreement for energies and spectroscopic factors below 2.5 MeV could only be obtained if up to 6 particles were allowed to be excited from the f_7/2 orbital into p_3/2, f_5/2, and p_1/2 orbitals across the N=28 gap. For levels above 2.5 MeV the experimental strength distribution was found to be significantly more fragmented than predicted by the shell model calculations.
227 - N. Frank , T. Baumann , D. Bazin 2007
The two-proton knockout reaction 9Be(26Ne,O2p) was used to explore excited unbound states of 23O and 24O. In 23O a state at an excitation energy of 2.79(13) MeV was observed. There was no conclusive evidence for the population of excited states in 24O.
We report on the first detailed study of the mechanisms involved in knockout reactions, via a coincidence measurement of the residue and fast proton in one-proton knockout reactions, using the S800 spectrograph in combination with the HiRA detector array at the NSCL. Results on the reactions $^9$Be($^9$C,$^8$B+X)Y and $^9$Be($^8$B,$^7$Be+X)Y are presented. They are compared with theoretical predictions for both the diffraction and stripping reaction mechanisms, as calculated in the eikonal model. The data shows a clear distinction between the two reaction mechanisms, and the observed respective proportions are very well reproduced by the reaction theory. This agreement supports the results of knockout reaction analyses and their applications to the spectroscopy of rare isotopes.
127 - C. Lehr 2021
The proton drip-line nucleus 17Ne is investigated experimentally in order to determine its two-proton halo character. A fully exclusive measurement of the 17Ne(p,2p)16F->15O+p quasi-free one-proton knockout reaction has been performed at GSI at around 500 MeV/nucleon beam energy. All particles resulting from the scattering process have been detected. The relevant reconstructed quantities are the angles of the two protons scattered in quasi-elastic kinematics, the decay of 16F into 15O (including gamma decays from excited states) and a proton, as well as the 15O+p relative-energy spectrum and the 16F momentum distributions. The latter two quantities allow an independent and consistent determination of the ratio of l=0 and l=2 motion of the valence protons in 17Ne. With a resulting relatively small l=0 component of only around 35(3)%, it is concluded that 17Ne exhibits a rather modest halo character only. The quantitative agreement of the two values deduced from the energy spectrum and the momentum distributions supports the theoretical treatment of the calculation of momentum distributions after quasi-free knockout reactions at high energies by taking into account distortions based on the Glauber theory. Moreover, the experimental data allow the separation of valence-proton knockout and knockout from the 15O core. The latter process contributes with 11.8(3.1) mb around 40% to the total proton-knockout cross section of 30.3(2.3) mb, which explains previously reported contradicting conclusions derived from inclusive cross sections.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا