Do you want to publish a course? Click here

Population of neutron unbound states via two-proton knockout reactions

237   0   0.0 ( 0 )
 Added by Michael Thoennessen
 Publication date 2007
  fields
and research's language is English




Ask ChatGPT about the research

The two-proton knockout reaction 9Be(26Ne,O2p) was used to explore excited unbound states of 23O and 24O. In 23O a state at an excitation energy of 2.79(13) MeV was observed. There was no conclusive evidence for the population of excited states in 24O.



rate research

Read More

Neutron-unbound resonant states of 11Be were populated in neutron knock-out reactions from 12Be and identified by 10Be-n coincidence measurements. A resonance in the decay-energy spectrum at 80(2) keV was attributed to a highly excited unbound state in 11Be at 3.949(2) MeV decaying to the 2+ excited state in 10Be. A knockout cross section of 15(3) mb was inferred for this 3.949(2) MeV state suggesting a spectroscopic factor near unity for this 0p3/2- level, consistent with the detailed shell model calculations.
We report on the in-beam gamma spectroscopy of $^{102}$Sn and $^{100}$Cd produced via two-neutron removal from carbon and CH$_2$ targets at about 150 MeV/nucleon beam energy. New transitions assigned to the decay of a second 2$^+$ excited state at 2470(60) keV in $^{102}$Sn were observed. Two-neutron removal cross sections from $^{104}$Sn and $^{102}$Cd have been extracted. The enhanced cross section to the 2$^+_2$ in $^{102}$Sn populated via the $(p,p2n)$ reaction is traced back to an increase of shell-model structure overlaps, consistent with the hypothesis that the proton-induced two-deeply-bound-nucleon removal mechanism is of direct nature.
The structure of the unbound nuclei 9He, 10Li and 13Be has been explored using breakup and proton-knockout from intermediate energy 11Be and 14,15B beams. In the case of both N=7 isotones, virtual s-wave strength is observed near threshold together with a higher-lying resonance. A very narrow structure at threshold in the 12Be+n relative energy spectrum is demonstrated to arise from the decay of the 14Be*(2+), discounting earlier reports of a strong virtual s-wave state in 13Be.
127 - C. Lehr 2021
The proton drip-line nucleus 17Ne is investigated experimentally in order to determine its two-proton halo character. A fully exclusive measurement of the 17Ne(p,2p)16F->15O+p quasi-free one-proton knockout reaction has been performed at GSI at around 500 MeV/nucleon beam energy. All particles resulting from the scattering process have been detected. The relevant reconstructed quantities are the angles of the two protons scattered in quasi-elastic kinematics, the decay of 16F into 15O (including gamma decays from excited states) and a proton, as well as the 15O+p relative-energy spectrum and the 16F momentum distributions. The latter two quantities allow an independent and consistent determination of the ratio of l=0 and l=2 motion of the valence protons in 17Ne. With a resulting relatively small l=0 component of only around 35(3)%, it is concluded that 17Ne exhibits a rather modest halo character only. The quantitative agreement of the two values deduced from the energy spectrum and the momentum distributions supports the theoretical treatment of the calculation of momentum distributions after quasi-free knockout reactions at high energies by taking into account distortions based on the Glauber theory. Moreover, the experimental data allow the separation of valence-proton knockout and knockout from the 15O core. The latter process contributes with 11.8(3.1) mb around 40% to the total proton-knockout cross section of 30.3(2.3) mb, which explains previously reported contradicting conclusions derived from inclusive cross sections.
We report on the first detailed study of the mechanisms involved in knockout reactions, via a coincidence measurement of the residue and fast proton in one-proton knockout reactions, using the S800 spectrograph in combination with the HiRA detector array at the NSCL. Results on the reactions $^9$Be($^9$C,$^8$B+X)Y and $^9$Be($^8$B,$^7$Be+X)Y are presented. They are compared with theoretical predictions for both the diffraction and stripping reaction mechanisms, as calculated in the eikonal model. The data shows a clear distinction between the two reaction mechanisms, and the observed respective proportions are very well reproduced by the reaction theory. This agreement supports the results of knockout reaction analyses and their applications to the spectroscopy of rare isotopes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا