Do you want to publish a course? Click here

Low-temperature electroluminescence excitation mapping of excitons and trions in short channel monochiral carbon nanotube device

80   0   0.0 ( 0 )
 Added by Ralph Krupke
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Single walled carbon nanotubes as emerging quantum-light sources may fill a technological gap in silicon photonics due to their potential use as near infrared, electrically driven, classical or non-classical emitters. Unlike in photoluminescence, where nanotubes are excited with light, electrical excitation of single tubes is challenging and heavily influenced by device fabrication, architecture and biasing conditions. Here we present electroluminescence spectroscopy data of ultra short channel devices made from (9,8) carbon nanotubes emitting in the telecom band. Emissions are stable under current biasing and no quenching is observed down to 10 nm gap size. Low-temperature electroluminescence spectroscopy data also reported exhibits cold emission and linewidths down to 2 meV at 4 K. Electroluminescence excitation maps give evidence that carrier recombination is the mechanism for light generation in short channels. Excitonic and trionic emissions can be switched on and off by gate voltage and corresponding emission efficiency maps were compiled. Insights are gained into the influence of acoustic phonons on the linewidth, absence of intensity saturation and exciton exciton annihilation, environmental effects like dielectric screening and strain on the emission wavelength, and conditions to suppress hysteresis and establish optimum operation conditions.

rate research

Read More

The recent surge of interest in brain-inspired computing and power-efficient electronics has dramatically bolstered development of computation and communication using neuron-like spiking signals. Devices that can produce rapid and energy-efficient spiking could significantly advance these applications. Here we demonstrate DC-current or voltage-driven periodic spiking with sub-20 ns pulse widths from a single device composed of a thin VO2 film with a metallic carbon nanotube as a nanoscale heater. Compared with VO2-only devices, adding the nanotube heater dramatically decreases the transient duration and pulse energy, and increases the spiking frequency, by up to three orders of magnitude. This is caused by heating and cooling of the VO2 across its insulator-metal transition being localized to a nanoscale conduction channel in an otherwise bulk medium. This result provides an important component of energy-efficient neuromorphic computing systems, and a lithography-free technique for power-scaling of electronic devices that operate via bulk mechanisms.
The conductivity of carbon nanotube (CNT) networks can be improved markedly by doping with nitric acid. In the present work, CNTs and junctions of CNTs functionalized with NO$_3$ molecules are investigated to understand the microscopic mechanism of nitric acid doping. According to our density functional theory band structure calculations, there is charge transfer from the CNT to adsorbed molecules indicating p-type doping. The average doping efficiency of the NO$_3$ molecules is higher if the NO$_3$ molecules form complexes with water molecules. In addition to electron transport along individual CNTs, we have also studied electron transport between different types (metallic, semiconducting) of CNTs. Reflecting the differences in the electronic structures of semiconducting and metallic CNTs, we have found that besides turning semiconducting CNTs metallic, doping further increases electron transport most efficiently along semiconducting CNTs as well as through a junction between them.
We have characterized the conductivity of carbon nanotubes (CNT) fibers enriched in semiconducting species as a function of temperature and pulsed laser irradiation of 266 nm wavelength. While at high temperatures the response approaches an Arrhenius law behavior, from room temperature down to 4.2 K the response can be framed, quantitatively, within the predictions of the fluctuation induced tunneling which occurs between the inner fibrils (bundles) of the samples and/or the elementary CNTs constituting the fibers. Laser irradiation induces an enhancement of the conductivity, and analysis of the resulting data confirms the (exponential) dependence of the potential barrier upon temperature as expected from the fluctuation induced tunneling model. A thermal map of the experimental configuration consisting of laser-irradiated fibers is also obtained via COMSOL simulations in order to rule out bare heating phenomena as the background of our experiments. (*) Author
Incorporating multifunctionality along with the spin-related phenomenon in a single device is of great interest for the development of next generation spintronic devices. One of these challenges is to couple the photo-response of the device together with its magneto-response to exploit the multifunctional operation at room temperature. Here, the multifunctional operation of a single layer p-type molecular spin valve is presented, where the device shows a photovoltaic effect at the room temperature on a transparent glass substrate. The generated photovoltage is almost three times larger than the applied bias to the device which facilitates the modulation of the magnetic response of the device both with bias and light. It is observed that the photovoltage modulation with light and magnetic field is linear with the light intensity. The device shows an increase in power conversion efficiency under magnetic field, an ability to invert the current with magnetic field and under certain conditions it can act as a spin-photodetector with zero power consumption in the standby mode. The room temperature exploitation of the interplay among light, bias and magnetic field in the single device with a p-type molecule opens a way towards more complex and efficient operation of a complete spin-photovoltaic cell.
We have measured the electroluminescence and photoluminescence of (9,7) semiconducting carbon nanotube devices and demonstrate that the electroluminescence wavelength is determined by the nanotubes chiral index (n,m). The devices were fabricated on Si3N4 membranes by dielectrophoretic assembly of tubes from monochiral dispersion. Electrically driven (9,7) devices exhibit a single Lorentzian shaped emission peak at 825 nm in the visible part of the spectrum. The emission could be assigned to the excitonic E22 interband transition by comparison of the electroluminescence spectra with corresponding photoluminescence excitation maps. We show a linear dependence of the EL peak width on the electrical current, and provide evidence for the inertness of Si3N4 surfaces with respect to the nanotubes optical properties.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا