No Arabic abstract
Machine Learning (ML) is proving extremely beneficial in many healthcare applications. In pediatric oncology, retrospective studies that investigate the relationship between treatment and late adverse effects still rely on simple heuristics. To assess the effects of radiation therapy, treatment plans are typically simulated on phantoms, i.e., virtual surrogates of patient anatomy. Currently, phantoms are built according to reasonable, yet simple, human-designed criteria. This often results in a lack of individualization. We present a novel approach that combines imaging and ML to build individualized phantoms automatically. Given the features of a patient treated historically (only 2D radiographs available), and a database of 3D Computed Tomography (CT) imaging with organ segmentations and relative patient features, our approach uses ML to predict how to assemble a patient-specific phantom automatically. Experiments on 60 abdominal CTs of pediatric patients show that our approach constructs significantly more representative phantoms than using current phantom building criteria, in terms of location and shape of the abdomen and of two considered organs, the liver and the spleen. Among several ML algorithms considered, the Gene-pool Optimal Mixing Evolutionary Algorithm for Genetic Programming (GP-GOMEA) is found to deliver the best performing models, which are, moreover, transparent and interpretable mathematical expressions.
Most problems in Earth sciences aim to do inferences about the system, where accurate predictions are just a tiny part of the whole problem. Inferences mean understanding variables relations, deriving models that are physically interpretable, that are simple parsimonious, and mathematically tractable. Machine learning models alone are excellent approximators, but very often do not respect the most elementary laws of physics, like mass or energy conservation, so consistency and confidence are compromised. In this paper, we describe the main challenges ahead in the field, and introduce several ways to live in the Physics and machine learning interplay: to encode differential equations from data, constrain data-driven models with physics-priors and dependence constraints, improve parameterizations, emulate physical models, and blend data-driven and process-based models. This is a collective long-term AI agenda towards developing and applying algorithms capable of discovering knowledge in the Earth system.
In the field of reproductive health, a vital aspect for the detection of male fertility issues is the analysis of human semen quality. Two factors of importance are the morphology and motility of the sperm cells. While the former describes defects in different parts of a spermatozoon, the latter measures the efficient movement of cells. For many non-human species, so-called Computer-Aided Sperm Analysis systems work well for assessing these characteristics from microscopic video recordings but struggle with human sperm samples which generally show higher degrees of debris and dead spermatozoa, as well as lower overall sperm motility. Here, machine learning methods that harness large amounts of training data to extract salient features could support physicians with the detection of fertility issues or in vitro fertilisation procedures. In this work, the overall motility of given sperm samples is predicted with the help of a machine learning framework integrating unsupervised methods for feature extraction with downstream regression models. The models evaluated herein improve on the state-of-the-art for video-based sperm-motility prediction.
In our experience of working with domain experts who are using todays AutoML systems, a common problem we encountered is what we call unrealistic expectations -- when users are facing a very challenging task with noisy data acquisition process, whilst being expected to achieve startlingly high accuracy with machine learning (ML). Consequently, many computationally expensive AutoML runs and labour-intensive ML development processes are predestined to fail from the beginning. In traditional software engineering, this problem is addressed via a feasibility study, an indispensable step before developing any software system. In this paper, we present ease.ml/snoopy with the goal of preforming an automatic feasibility study before building ML applications or collecting too many samples. A user provides inputs in the form of a dataset, which is representative for the task and data acquisition process, and a quality target (e.g., expected accuracy > 0.8). The system returns its deduction on whether this target is achievable using ML given the input data. We approach this problem by estimating the irreducible error of the underlying task, also known as Bayes error. The technical key contribution of this work is the design of a practical Bayes error estimator. We carefully evaluate the benefits and limitations of running ease.ml/snoopy prior to training ML models on too noisy datasets for reaching the desired target accuracy. By including the automatic feasibility study into the iterative label cleaning process, users are able to save substantial labeling time and monetary efforts.
Context: Conducting experiments is central to research machine learning research to benchmark, evaluate and compare learning algorithms. Consequently it is important we conduct reliable, trustworthy experiments. Objective: We investigate the incidence of errors in a sample of machine learning experiments in the domain of software defect prediction. Our focus is simple arithmetical and statistical errors. Method: We analyse 49 papers describing 2456 individual experimental results from a previously undertaken systematic review comparing supervised and unsupervised defect prediction classifiers. We extract the confusion matrices and test for relevant constraints, e.g., the marginal probabilities must sum to one. We also check for multiple statistical significance testing errors. Results: We find that a total of 22 out of 49 papers contain demonstrable errors. Of these 7 were statistical and 16 related to confusion matrix inconsistency (one paper contained both classes of error). Conclusions: Whilst some errors may be of a relatively trivial nature, e.g., transcription errors their presence does not engender confidence. We strongly urge researchers to follow open science principles so errors can be more easily be detected and corrected, thus as a community reduce this worryingly high error rate with our computational experiments.
We develop a Bayesian nonparametric model for reconstructing magnetic resonance images (MRI) from highly undersampled k-space data. We perform dictionary learning as part of the image reconstruction process. To this end, we use the beta process as a nonparametric dictionary learning prior for representing an image patch as a sparse combination of dictionary elements. The size of the dictionary and the patch-specific sparsity pattern are inferred from the data, in addition to other dictionary learning variables. Dictionary learning is performed directly on the compressed image, and so is tailored to the MRI being considered. In addition, we investigate a total variation penalty term in combination with the dictionary learning model, and show how the denoising property of dictionary learning removes dependence on regularization parameters in the noisy setting. We derive a stochastic optimization algorithm based on Markov Chain Monte Carlo (MCMC) for the Bayesian model, and use the alternating direction method of multipliers (ADMM) for efficiently performing total variation minimization. We present empirical results on several MRI, which show that the proposed regularization framework can improve reconstruction accuracy over other methods.