We investigated electromagnetic precursor wave emission in relativistic shocks by using two-dimensional particle-in-cell simulations. We found that the wave amplitude is significantly enhanced by a positive feedback process associated with ion-electron coupling through the wakefields for high magnetization. The wakefields collapse during the nonlinear process of the parametric decay instability in the near-upstream region, where nonthermal electrons and ions are generated. The intense coherent emission and the particle acceleration may opperate in high-energy astrophysical objects.
Mildly relativistic shocks in magnetized electron-ion plasmas are investigated with 2D kinetic particle-in-cell simulations of unprecedentedly high resolution and large scale for conditions that may be found at internal shocks in blazar cores. Ion-scale effects cause corrugations along the shock surface whose properties somewhat depend on the configuration of the mean perpendicular magnetic field, that is either in or out of the simulation plane. We show that the synchrotron maser instability persists to operate in mildly relativistic shocks in agreement with theoretical predictions and produces coherent emission of upstream-propagating electromagnetic waves. Shock front ripples are excited in both mean-field configurations and they engender effective wave amplification. The interaction of these waves with upstream plasma generates electrostatic wakefields.
Particle acceleration and heating at mildly relativistic magnetized shocks in electron-ion plasma are investigated with unprecedentedly high-resolution two-dimensional particle-in-cell simulations that include ion-scale shock rippling. Electrons are super-adiabatically heated at the shock, and most of the energy transfer from protons to electrons takes place at or downstream of the shock. We are the first to demonstrate that shock rippling is crucial for the energization of electrons at the shock. They remain well below equipartition with the protons. The downstream electron spectra are approximately thermal with a limited supra-thermal power-law component. Our results are discussed in the context of wakefield acceleration and the modelling of electromagnetic radiation from blazar cores.
A two-dimensional particle-in-cell simulation is performed to investigate weakly magnetized perpendicular shocks with a magnetization parameter of 6 x 10^-5, which is equivalent to a high Alfven Mach number M_A of ~130. It is shown that current filaments form in the foot region of the shock due to the ion-beam--Weibel instability (or the ion filamentation instability) and that they generate a strong magnetic field there. In the downstream region, these current filaments also generate a tangled magnetic field that is typically 15 times stronger than the upstream magnetic field. The thermal energies of electrons and ions in the downstream region are not in equipartition and their temperature ratio is T_e / T_i ~ 0.3 - 0.4. Efficient electron acceleration was not observed in our simulation, although a fraction of the ions are accelerated slightly on reflection at the shock. The simulation results agree very well with the Rankine-Hugoniot relations. It is also shown that electrons and ions are heated in the foot region by the Buneman instability (for electrons) and the ion-acoustic instability (for both electrons and ions). However, the growth rate of the Buneman instability is significantly reduced due to the relatively high temperature of the reflected ions. For the same reason, ion-ion streaming instability does not grow in the foot region.
We develop a comprehensive theoretical model of relativistic collisionless pair shocks mediated by the current filamentation instability. We notably characterize the noninertial frame in which this instability is of a mostly magnetic nature, and describe at a microscopic level the deceleration and heating of the incoming background plasma through its collisionless interaction with the electromagnetic turbulence. Our model compares well to large-scale 2D3V PIC simulations, and provides an important touchstone for the phenomenology of such plasma systems.
Relativistic magnetized shocks are a natural source of coherent emission, offering a plausible radiative mechanism for Fast Radio Bursts (FRBs). We present first-principles 3D simulations that provide essential information for the FRB models based on shocks: the emission efficiency, spectrum, and polarization. The simulated shock propagates in an $e^pm$ plasma with magnetization $sigma>1$. The measured fraction of shock energy converted to coherent radiation is $simeq 10^{-3} , sigma^{-1}$, and the energy-carrying wavenumber of the wave spectrum is $simeq 4 ,omega_{rm c}/c$, where $omega_{rm c}$ is the upstream gyrofrequency. The ratio of the O-mode and X-mode energy fluxes emitted by the shock is $simeq 0.4,sigma^{-1}$. The dominance of the X-mode at $sigmagg 1$ is particularly strong, approaching 100% in the spectral band around $2,omega_{rm c}$. We also provide a detailed description of the emission mechanism for both X- and O-modes.