No Arabic abstract
A two-dimensional particle-in-cell simulation is performed to investigate weakly magnetized perpendicular shocks with a magnetization parameter of 6 x 10^-5, which is equivalent to a high Alfven Mach number M_A of ~130. It is shown that current filaments form in the foot region of the shock due to the ion-beam--Weibel instability (or the ion filamentation instability) and that they generate a strong magnetic field there. In the downstream region, these current filaments also generate a tangled magnetic field that is typically 15 times stronger than the upstream magnetic field. The thermal energies of electrons and ions in the downstream region are not in equipartition and their temperature ratio is T_e / T_i ~ 0.3 - 0.4. Efficient electron acceleration was not observed in our simulation, although a fraction of the ions are accelerated slightly on reflection at the shock. The simulation results agree very well with the Rankine-Hugoniot relations. It is also shown that electrons and ions are heated in the foot region by the Buneman instability (for electrons) and the ion-acoustic instability (for both electrons and ions). However, the growth rate of the Buneman instability is significantly reduced due to the relatively high temperature of the reflected ions. For the same reason, ion-ion streaming instability does not grow in the foot region.
Mildly relativistic shocks in magnetized electron-ion plasmas are investigated with 2D kinetic particle-in-cell simulations of unprecedentedly high resolution and large scale for conditions that may be found at internal shocks in blazar cores. Ion-scale effects cause corrugations along the shock surface whose properties somewhat depend on the configuration of the mean perpendicular magnetic field, that is either in or out of the simulation plane. We show that the synchrotron maser instability persists to operate in mildly relativistic shocks in agreement with theoretical predictions and produces coherent emission of upstream-propagating electromagnetic waves. Shock front ripples are excited in both mean-field configurations and they engender effective wave amplification. The interaction of these waves with upstream plasma generates electrostatic wakefields.
We herein investigate shock formation and particle acceleration processes for both protons and electrons in a quasi-parallel high-Mach-number collisionless shock through a long-term, large-scale particle-in-cell simulation. We show that both protons and electrons are accelerated in the shock and that these accelerated particles generate large-amplitude Alfv{e}nic waves in the upstream region of the shock. After the upstream waves have grown sufficiently, the local structure of the collisionless shock becomes substantially similar to that of a quasi-perpendicular shock due to the large transverse magnetic field of the waves. A fraction of protons are accelerated in the shock with a power-law-like energy distribution. The rate of proton injection to the acceleration process is approximately constant, and in the injection process, the phase-trapping mechanism for the protons by the upstream waves can play an important role. The dominant acceleration process is a Fermi-like process through repeated shock crossings of the protons. This process is a `fast process in the sense that the time required for most of the accelerated protons to complete one cycle of the acceleration process is much shorter than the diffusion time. A fraction of the electrons is also accelerated by the same mechanism, and have a power-law-like energy distribution. However, the injection does not enter a steady state during the simulation, which may be related to the intermittent activity of the upstream waves. Upstream of the shock, a fraction of the electrons is pre-accelerated before reaching the shock, which may contribute to steady electron injection at a later time.
Particle acceleration and heating at mildly relativistic magnetized shocks in electron-ion plasma are investigated with unprecedentedly high-resolution two-dimensional particle-in-cell simulations that include ion-scale shock rippling. Electrons are super-adiabatically heated at the shock, and most of the energy transfer from protons to electrons takes place at or downstream of the shock. We are the first to demonstrate that shock rippling is crucial for the energization of electrons at the shock. They remain well below equipartition with the protons. The downstream electron spectra are approximately thermal with a limited supra-thermal power-law component. Our results are discussed in the context of wakefield acceleration and the modelling of electromagnetic radiation from blazar cores.
High Mach number collisionless shocks are found in planetary systems and supernova remnants (SNRs). Electrons are heated at these shocks to the temperature well above the Rankine-Hugoniot prediction. However processes responsible for electron heating are still not well understood. We use a set of large-scale Particle-In-Cell simulations of non-relativistic shocks in high Mach number regime to clarify the electron heating processes. The physics of these shocks is defined by ion reflection at the shock ramp. Further interaction of the reflected ions and the upstream plasma excites electrostatic Buneman and two-stream ion-ion Weibel instabilities. Electrons are heated via shock surfing acceleration, the shock potential, magnetic reconnection, stochastic Fermi scattering and the shock compression. The main contributor is the shock potential. Magnetic field lines are tangled due to the Weibel instability, which allows the parallel electron heating by the shock potential. The constrained model of the electron heating predicts the ion-to-electron temperature ratio within observed values at SNR shocks and in Saturns bow shock.
In this paper, by performing a two-dimensional particle-in-cell simulation, we investigate magnetic reconnection in the downstream of a quasi-perpendicular shock. The shock is nonstationary, and experiences a cyclic reformation. At the beginning of reformation process, the shock front is relatively flat, and part of upstream ions are reflected by the shock front. The reflected ions move upward in the action of Lorentz force, which leads to the upward bending of magnetic field lines at the foot of the shock front, and then a current sheet is formed due to the squeezing of the bending magnetic field lines. The formed current sheet is brought toward the shock front by the solar wind, and the shock front becomes irregular after interacting with the current sheet. Both the current sheet brought by the solar wind and the current sheet associated with the shock front are then fragmented into many small filamentary current sheets. Electron-scale magnetic reconnection may occur in several of these filamentary current sheets when they are convected into the downstream, and magnetic islands are generated. A strong reconnection electric field and energy dissipation are also generated around the X line, and high-speed electron outflow is also formed.