Do you want to publish a course? Click here

Fundamental relations for anomalous thermoelectric transport coefficients in the non-linear regime

70   0   0.0 ( 0 )
 Added by Chuanchang Zeng
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

In a series of recent papers anomalous Hall and Nernst effects have been theoretically discussed in the non-linear regime and have seen some early success in experiments. In this paper, by utilizing the role of Berry curvature dipole, we derive the fundamental mathematical relations between the anomalous electric and thermoelectric transport coefficients in the non-linear regime. The formulae we derive replace the celebrated Wiedemann-Franz law and Mott relation of anomalous thermoelectric transport coefficients defined in the linear response regime. In addition to fundamental and testable new formulae, an important byproduct of this work is the prediction of nonlinear anomalous thermal Hall effect which can be observed in experiments.

rate research

Read More

277 - Peng Wei , Wenzhong Bao , Yong Pu 2009
We report a thermoelectric study of graphene in both zero and applied magnetic fields. As a direct consequence of the linear dispersion of massless particles, we find that the Seebeck coefficient Sxx diverges with 1 /, where n2D is the carrier density. We observe a very large Nernst signal Sxy (~ 50 uV/K at 8 T) at the Dirac point, and an oscillatory dependence of both Sxx and Sxy on n2D at low temperatures. Our results underscore the anomalous thermoelectric transport in graphene, which may be used as a highly sensitive probe for impurity bands near the Dirac point.
Thermoelectric transport coefficients are determined for semiconductor quantum wires with weak thickness fluctuations. Such systems exhibit anomalies in conductance near 1/4 and 3/4 of 2e^2/h on the rising edge to the first conductance plateau, explained by singlet and triplet resonances of conducting electrons with a single weakly bound electron in the wire [T. Rejec, A. Ramsak, and J.H. Jefferson, Phys. Rev. B 62, 12985 (2000)]. We extend this work to study the Seebeck thermopower coefficient and linear thermal conductance within the framework of the Landauer-Buettiker formalism, which also exhibit anomalous structures. These features are generic and robust, surviving to temperatures of a few degrees. It is shown quantitatively how at elevated temperatures thermal conductance progressively deviates from the Wiedemann-Franz law.
Molecular junctions and similar devices described by an energy dependent transmission coefficient can have a high linear response thermoelectric figure of merit. Since such devices are inherently non-linear, the full thermodynamic efficiency valid for any temperature and chemical potential difference across the leads is calculated. The general features in the energy dependence of the tranmission function that lead to high efficiency and also high power output are determined. It is shown that the device with the highest efficiency does not necessarily lead to large power output. To illustrate this, we use a model called the t-stub model representing tunneling through an energy level connected to another energy level. Within this model both high efficiency and high power output are achievable. Futhermore, by connecting many nanodevices it is shown to be possible to scale up the power output without compromising efficiency in an (exactly solvable) n-channel model even with tunneling between the devices.
89 - I. Neder , E. Ginossar 2008
We investigate theoretically the behavior of the current oscillations in an electronic Mach-Zehnder interferometer (MZI) as a function of its source bias. Recently, The MZI interference visibility showed an unexplained lobe pattern behavior with a peculiar phase rigidity. Moreover, the effect did not depend on the MZI paths difference. We argue that these effects may be a new many-body manifestation of particle-wave duality of quantum mechanics. When biasing the interferometer sources beyond the linear response regime, quantum shot-noise (a particle phenomena) must affect the interference pattern of the electrons that creates it, as a result from a simple invariance argument. An approximate solution of the interacting Hamiltonian indeed shows that the interference visibility has a lobe pattern with applied bias with a period proportional to the average path length and independent of the paths difference, together with a phase rigidity.
We work out a theory of the Coulomb drag current created under the ballistic transport regime in a one-dimensional nanowire by a ballistic non-Ohmic current in a nearby parallel nanowire. As in the Ohmic case, we predict sharp oscillation of the drag current as a function of gate voltage or the chemical potential of electrons. We study also dependence of the drag current on the voltage V across the driving wire. For relatively large values of V the drag current is proportional to V^2.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا