Do you want to publish a course? Click here

Spin-dependent thermoelectric transport coefficients in near-perfect quantum wires

247   0   0.0 ( 0 )
 Added by Toni Ramsak
 Publication date 2002
  fields Physics
and research's language is English




Ask ChatGPT about the research

Thermoelectric transport coefficients are determined for semiconductor quantum wires with weak thickness fluctuations. Such systems exhibit anomalies in conductance near 1/4 and 3/4 of 2e^2/h on the rising edge to the first conductance plateau, explained by singlet and triplet resonances of conducting electrons with a single weakly bound electron in the wire [T. Rejec, A. Ramsak, and J.H. Jefferson, Phys. Rev. B 62, 12985 (2000)]. We extend this work to study the Seebeck thermopower coefficient and linear thermal conductance within the framework of the Landauer-Buettiker formalism, which also exhibit anomalous structures. These features are generic and robust, surviving to temperatures of a few degrees. It is shown quantitatively how at elevated temperatures thermal conductance progressively deviates from the Wiedemann-Franz law.



rate research

Read More

We analyze thermally induced spin and charge transport in HgTe/CdTe quantum wells on the basis of the numerical non-equilibrium Greens function technique in the linear response regime. In the topologically non-trivial regime, we find a clear signature of the gap of the edge states due to their finite overlap from opposite sample boundaries -- both in the charge Seebeck and spin Nernst signal. We are able to fully understand the physical origin of the thermoelectric transport signatures of edge and bulk states based on simple analytical models. Interestingly, we derive that the spin Nernst signal is related to the spin Hall conductance by a Mott-like relation which is exact to all orders in the temperature difference between the warm and the cold reservoir.
We study thermoelectric transport through double quantum dots system with spin-dependent interdot coupling and ferromagnetic electrodes by means of the non-equilibrium Green function in the linear response regime. It is found that the thermoelectric coefficients are strongly dependent on the splitting of interdot coupling, the relative magnetic configurations and the spin polarization of leads. In particular, the thermoelectric efficiency can achieve considerable value in parallel configuration when the effective interdot coupling and tunnel coupling between QDs and the leads for spin-down electrons are small. Moreover, the thermoelectric efficiency increases with the intradot Coulomb interactions increasing and can reach very high value at an appropriate temperature. In the presence of the magnetic field, the spin accumulation in leads strongly suppresses the thermoelectric efficiency and a pure spin thermopower can be obtained.
When a quantum wire is weakly confined, a conductance plateau appears at e^2/h with decreasing carrier density in zero magnetic field accompanied by a gradual suppression of the 2e^2/h plateau. Applying an in-plane magnetic field B|| does not alter the value of this quantization; however, the e^2/h plateau weakens with increasing B|| up to 9 T, and then strengthens on further increasing B||, which also restores the 2e^2/h plateau. Our results are consistent with spin-incoherent transport in a one-dimensional wire.
Considering Rashba quantum wires with a proximity-induced superconducting gap as physical realizations of Majorana fermions and quantum dots, we calculate the overlap of the Majorana wave functions with the local wave functions on the dot. We determine the spin-dependent tunneling amplitudes between these two localized states and show that we can tune into a fully spin polarized tunneling regime by changing the distance between dot and Majorana fermion. Upon directly applying this to the tunneling model Hamiltonian, we calculate the effective magnetic field on the quantum dot flanked by two Majorana fermions. The direction of the induced magnetic field on the dot depends on the occupation of the nonlocal fermion formed from the two Majorana end states which can be used as a readout for such a Majorana qubit.
We study the effects caused by Rashba and Dresselhaus spin-orbit coupling over the thermoelectric transport properties of a single-electron transistor, viz., a quantum dot connected to one-dimensional leads. Using linear response theory and employing the numerical renormalization group method, we calculate the thermopower, electrical and thermal conductances, dimensionless thermoelectric figure of merit, and study the Wiedemann-Franz law, showing their temperature maps. Our results for all those properties indicate that spin-orbit coupling drives the system into the Kondo regime. We show that the thermoelectric transport properties, in the presence of spin-orbit coupling, obey the expected universality of the Kondo strong coupling fixed point. In addition, our results show a notable increase in the thermoelectric figure of merit, caused by the spin-orbit coupling in the one-dimensional quantum dot leads.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا