Do you want to publish a course? Click here

Pushing the Limit of High-Q Mode of a Single Subwavelength Dielectric Nanocavity

65   0   0.0 ( 0 )
 Added by Lujun Huang
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

High index dielectric nanostructure supports different types of resonant modes. However, it is very challenging to achieve high-Q factor in a single subwavelength dielectric nanoresonator due to non-hermtian property of the open system. Here, we present a universal approach of finding out a series of high-Q resonant modes in a single nonspherical dielectric nanocavity by exploring quasi-bound state in the continuum. Unlike conventional method relying on heavy computation (ie, frequency scanning by FDTD), our approach is built upon leaky mode engineering, through which many high-Q modes can be easily achieved by constructing avoid-crossing (or crossing) of the eigenvalue for pair leaky modes. The Q-factor can be up to 2.3*10^4 for square subwavelength nanowire (NW) (n=4), which is 64 times larger than the highest Q-factor (Q=360) reported so far in single subwavelength nanodisk. Such high-Q modes can be attributed to suppressed radiation in the corresponding eigenchannels and simultaneously quenched electric(magnetic) at momentum space. As a proof of concept, we experimentally demonstrate the emergence of the high-Q resonant modes (Q=380) in the scattering spectrum of a single silicon subwavelength nanowire.



rate research

Read More

It is common understanding that multilayered dielectric metamaterials, in the regime of deeply subwavelength layers, are accurately described by simple effective-medium models based on mixing formulas that do not depend on the spatial arrangement. In the wake of recent studies that have shown counterintuitive examples of periodic and aperiodic (orderly or random) scenarios in which this premise breaks down, we study here the effects of deterministic disorder. With specific reference to a model based on Golay-Rudin-Shapiro sequences, we illustrate certain peculiar boundary effects that can occur in finite-size dielectric multilayers, leading to anomalous light-transport properties that are in stark contrast with the predictions from conventional effective-medium theory. Via parametric and comparative studies, we elucidate the underlying physical mechanisms, also highlighting similarities and differences with respect to previously studied geometries. Our outcomes may inspire potential applications to optical sensing, switching and lasing.
We demonstrate a high-contrast electro-optic modulation of a photonic crystal nanocavity integrated with an electrically gated monolayer graphene. A high quality (Q) factor air-slot nanocavity design is employed for high overlap between the optical field and graphene sheet. Tuning of graphenes Fermi level up to 0.8 eV enables efficient control of its complex dielectric constant, which allows modulation of the cavity reflection in excess of 10 dB for a swing voltage of only 1.5 V. We also observe a controllable resonance wavelength shift close to 2 nm around a wavelength of 1570 nm and a Q factor modulation in excess of three. These observations allow cavity-enhanced measurements of the graphene complex dielectric constant under different chemical potentials, in agreement with a theoretical model of the graphene dielectric constant under gating. This graphene-based nanocavity modulation demonstrates the feasibility of high-contrast, low-power frequency-selective electro-optic nanocavity modulators in graphene-integrated silicon photonic chips.
We demonstrate the active tuning of all-dielectric metasurfaces exhibiting high-quality factor (high-Q) resonances. The active control is provided by embedding the asymmetric silicon meta-atoms with liquid crystals, which allows the relative index of refraction to be controlled through heating. It is found that high quality factor resonances ($Q=270pm30$) can be tuned over more than three resonance widths. Our results demonstrate the feasibility of using all-dielectric metasurfaces to construct tunable narrow-band filters.
Besides purely academic interest, giant field enhancement within subwavelength particles at light scattering of a plane electromagnetic wave is important for numerous applications ranging from telecommunications to medicine and biology. In this paper, we experimentally demonstrate the enhancement of the intensity of the magnetic field in a high-index dielectric cylinder at the proximity of the dipolar Mie resonances by more than two orders of magnitude for both the TE and TM polarizations of the incident wave. We present a complete theoretical explanation of the effect and show that the phenomenon is very general - it should be observed for any high-index particles. The results explain the huge enhancement of nonlinear effects observed recently in optics, suggesting a new landscape for all-dielectric nonlinear nanoscale photonics.
Micro-sized spheres can focus light into subwavelength spatial domains: a phenomena called photonic nanojet. Even though well studied in three-dimensional (3D) configurations, only a few attempts have been reported to observe similar phenomena in two-dimensional (2D) systems. This, however, is important to take advantage of photonic nanojets in integrated optical systems. Usually, surface plasmon polaritons are suggested for this purpose, but they suffer notoriously from the rather low propagation lengths due to intrinsic absorption. Here, we solve this problem and explore, theoretically, numerically, and experimentally, the use of Bloch surface waves sustained by a suitably structured all-dielectric media to enable subwavelength focusing in an integrated planar optical system. Since only a low index contrast can be achieved while relying on Bloch surface waves, we perceive a new functional element that allows a tight focusing and the observation of a photonic nanojet on top of the surface. We experimentally demonstrate a spot size of 0.66{lambda} in the effective medium. Our approach paves the way to 2D all-dielectric photonic chips for nano-particle manipulation in fluidic devices and sensing applications.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا