Do you want to publish a course? Click here

Giant field enhancement in high-index dielectric subwavelength particles

75   0   0.0 ( 0 )
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Besides purely academic interest, giant field enhancement within subwavelength particles at light scattering of a plane electromagnetic wave is important for numerous applications ranging from telecommunications to medicine and biology. In this paper, we experimentally demonstrate the enhancement of the intensity of the magnetic field in a high-index dielectric cylinder at the proximity of the dipolar Mie resonances by more than two orders of magnitude for both the TE and TM polarizations of the incident wave. We present a complete theoretical explanation of the effect and show that the phenomenon is very general - it should be observed for any high-index particles. The results explain the huge enhancement of nonlinear effects observed recently in optics, suggesting a new landscape for all-dielectric nonlinear nanoscale photonics.



rate research

Read More

Electromagnetic scattering on subwavelength structures keeps attracting attention owing to abroad range of possible applications, where this phenomenon is in use. Fundamental limits of scattering cross-section, being well understood in spherical geometries, are overlooked in cases of low-symmetry resonators. Here, we revise the notion of superscattering and link this property with symmetry groups of the scattering potential. We demonstrate pathways to spectrally overlap several eigenmodes of a resonator in a way they interfere constructively and enhance the scattering cross-section. As a particular example, we demonstrate spectral overlapping of several electric and magnetic modes in a subwavelength entirely homogeneous ceramic resonator. The optimized structures show the excess of a dipolar scattering cross-section limit for a sphere up to a factor of four. The revealed rules, which link symmetry groups with fundamental scattering limits, allow performing and assessing designs of subwavelength supperscatterers, which can find a use in label-free imaging, compact antennas, long-range radio frequency identification, and many other fields.
A detailed analytical inspection of light scattering by a particle with high refractive index m+ikappa and small dissipative constant kappa is presented. We have shown that there is a dramatic difference in the behavior of the electromagnetic field within the particle (inner problem) and the scattered field outside it (outer problem). With an increase in m at fix values of the other parameters, the field within the particle asymptotically converges to a periodic function of m. The electric and magnetic type Mie resonances of different orders overlap substantially. It may lead to a giant concentration of the electromagnetic energy within the particle. At the same time, we demonstrate that identical transformations of the solution for the outer problem allow to present each partial scattered wave as a sum of two partitions. One of them corresponds to the m-independent wave, scattered by a perfectly reflecting particle and plays the role of a background, while the other is associated with the excitation of a sharply-m-dependent resonant Mie mode. The interference of the partitions brings about a typical asymmetric Fano profile. The explicit expressions for the parameters of the Fano profile have been obtained from the first principles without any additional assumptions and/or fitting. In contrast to the inner problem, at an increase in m the resonant modes of the outer problem die out, and the scattered field converges to the universal, m-independent profile of the perfectly reflecting sphere. Numerical estimates of the discussed effects for a gallium phosphide particle are presented.
76 - Jerome Le Perchec 2019
We closely study the local amplifications of visible light on a thin dielectric slab presenting a sub-wavelength array of small, rectangular, bottom-closed holes. The high-quality Fabry-Perot resonances of eigen modes which vertically oscillate, and their corresponding near-field maps, especially inside the voids, are numerically quantified with RCWA and analytically interpreted through a quasi-exact modal expansion. This last method gives explicit opto-geometrical rules allowing to finely understand the general trends in 1D and 2D. In more advanced examples, we show that multi-cavity and/or slightly thicker two-dimensional gratings may generate anomalously frequency-susceptible surfaces over a broad spectral range. Also, dielectric membranes a few nanometers thick only, can catch light, with tremendous enhancements of the electric field intensity ($>10^6$) that largely extends in the surrounding space.
Image processing and edge detection are at the core of several newly emerging technologies, such as augmented reality, autonomous driving and more generally object recognition. Image processing is typically performed digitally using integrated electronic circuits and algorithms, implying fundamental size and speed limitations, as well as significant power needs. On the other hand, it can also be performed in a low-power analog fashion using Fourier optics, requiring however bulky optical components. Here, we introduce dielectric metasurfaces that perform optical image edge detection in the analog domain using a subwavelength geometry that can be readily integrated with detectors. The metasurface is composed of a suitably engineered array of nanobeams designed to perform either 1st- or 2nd-order spatial differentiation. We experimentally demonstrate the 2nd-derivative operation on an input image, showing the potential of all-optical edge detection using a silicon metasurface geometry working at a numerical aperture as large as 0.35.
Micro-sized spheres can focus light into subwavelength spatial domains: a phenomena called photonic nanojet. Even though well studied in three-dimensional (3D) configurations, only a few attempts have been reported to observe similar phenomena in two-dimensional (2D) systems. This, however, is important to take advantage of photonic nanojets in integrated optical systems. Usually, surface plasmon polaritons are suggested for this purpose, but they suffer notoriously from the rather low propagation lengths due to intrinsic absorption. Here, we solve this problem and explore, theoretically, numerically, and experimentally, the use of Bloch surface waves sustained by a suitably structured all-dielectric media to enable subwavelength focusing in an integrated planar optical system. Since only a low index contrast can be achieved while relying on Bloch surface waves, we perceive a new functional element that allows a tight focusing and the observation of a photonic nanojet on top of the surface. We experimentally demonstrate a spot size of 0.66{lambda} in the effective medium. Our approach paves the way to 2D all-dielectric photonic chips for nano-particle manipulation in fluidic devices and sensing applications.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا