No Arabic abstract
We demonstrate a high-contrast electro-optic modulation of a photonic crystal nanocavity integrated with an electrically gated monolayer graphene. A high quality (Q) factor air-slot nanocavity design is employed for high overlap between the optical field and graphene sheet. Tuning of graphenes Fermi level up to 0.8 eV enables efficient control of its complex dielectric constant, which allows modulation of the cavity reflection in excess of 10 dB for a swing voltage of only 1.5 V. We also observe a controllable resonance wavelength shift close to 2 nm around a wavelength of 1570 nm and a Q factor modulation in excess of three. These observations allow cavity-enhanced measurements of the graphene complex dielectric constant under different chemical potentials, in agreement with a theoretical model of the graphene dielectric constant under gating. This graphene-based nanocavity modulation demonstrates the feasibility of high-contrast, low-power frequency-selective electro-optic nanocavity modulators in graphene-integrated silicon photonic chips.
Nanoscale and power-efficient electro-optic (EO) modulators are essential components for optical interconnects that are beginning to replace electrical wiring for intra- and inter-chip communications. Silicon-based EO modulators show sufficient figures of merits regarding device footprint, speed, power consumption and modulation depth. However, the weak electro-optic effect of silicon still sets a technical bottleneck for these devices, motivating the development of modulators based on new materials. Graphene, a two-dimensional carbon allotrope, has emerged as an alternative active material for optoelectronic applications owing to its exceptional optical and electronic properties. Here, we demonstrate a high-speed graphene electro-optic modulator based on a graphene-boron nitride (BN) heterostructure integrated with a silicon photonic crystal nanocavity. Strongly enhanced light-matter interaction of graphene in a submicron cavity enables efficient electrical tuning of the cavity reflection. We observe a modulation depth of 3.2 dB and a cut-off frequency of 1.2 GHz.
In this work we describe different types of photonic structures that allow tunability of the photonic band gap upon the application of external stimuli, as the electric or magnetic field. We review and compare two porous 1D photonic crystals: in the first one a liquid crystal has been infiltrated in the pores of the nanoparticle network, while in the second one the optical response to the electric field of metallic nanoparticles has been exploited. Then, we present a 1D photonic crystal made with indium tin oxide (ITO) nanoparticles, and we propose this system for electro-optic tuning. Finally, we describe a microcavity with a defect mode that is tuned in the near infrared by the magnetic field, envisaging a contact-less magneto-optic switch. These optical switches can find applications in ICT and electrochromic windows.
Vibrational resonance amplifies a weak low-frequency signal by use of an additional non-resonant high-frequency modulation. The realization of weak signal enhancement in integrated nonlinear optical nanocavities is of great interest for nanophotonic applications where optical signals may be of low power. Here, we report experimental observation of vibrational resonance in a thermo-optically bistable photonic crystal optomechanical resonator with an amplification up to +16 dB. The characterization of the bistability can interestingly be done using a mechanical resonance of the membrane, which is submitted to a strong thermo-elastic coupling with the cavity.
Modern advanced photonic integrated circuits require dense integration of high-speed electro-optic functional elements on a compact chip that consumes only moderate power. Energy efficiency, operation speed, and device dimension are thus crucial metrics underlying almost all current developments of photonic signal processing units. Recently, thin-film lithium niobate (LN) emerges as a promising platform for photonic integrated circuits. Here we make an important step towards miniaturizing functional components on this platform, reporting probably the smallest high-speed LN electro-optic modulators, based upon photonic crystal nanobeam resonators. The devices exhibit a significant tuning efficiency up to 1.98 GHz/V, a broad modulation bandwidth of 17.5 GHz, while with a tiny electro-optic modal volume of only 0.58 $mu {rm m}^3$. The modulators enable efficient electro-optic driving of high-Q photonic cavity modes in both adiabatic and non-adiabatic regimes, and allow us to achieve electro-optic switching at 11 Gb/s with a bit-switching energy as low as 22 fJ. The demonstration of energy efficient and high-speed electro-optic modulation at the wavelength scale paves a crucial foundation for realizing large-scale LN photonic integrated circuits that are of immense importance for broad applications in data communication, microwave photonics, and quantum photonics.
Modern communication networks require high performance and scalable electro-optic modulators that convert electrical signals to optical signals at high speed. Existing lithium niobate modulators have excellent performance but are bulky and prohibitively expensive to scale up. Here we demonstrate scalable and high-performance nanophotonic electro-optic modulators made of single-crystalline lithium niobate microring resonators and micro-Mach-Zehnder interferometers. We show a half-wave electro-optic modulation efficiency of 1.8V$cdot$cm and data rates up to 40 Gbps.