No Arabic abstract
We consider very general random integers and (attempt to) prove that many multiplicative and additive functions of such integers have limiting distributions. These integers include, for instance, the curvatures of Apollonian circle packings, trace of Frobenius elements for elliptic curves, the Ramanujan tau-function, Mersenne numbers, and many others.
We prove a result on the distribution of the general divisor functions in arithmetic progressions to smooth moduli which exceed the square root of the length.
Hecke studies the distribution of fractional parts of quadratic irrationals with Fourier expansion of Dirichlet series. This method is generalized by Behnke and Ash-Friedberg, to study the distribution of the number of totally positive integers of given trace in a general totally real number field of any degree. When the field is cubic, we show that the asymptotic behavior of a weighted Diophantine sum is related to the structure of the unit group. The main term can be expressed in terms of Grossencharacter $L$-functions.
We prove a new upper bound on the second moment of Maass form symmetric square L-functions defined over Gaussian integers. Combining this estimate with the recent result of Balog-Biro-Cherubini-Laaksonen, we improve the error term in the prime geodesic theorem for the Picard manifold.
In this Ph.D. dissertation (2018, Emory University) we prove theorems at the intersection of the additive and multiplicative branches of number theory, bringing together ideas from partition theory, $q$-series, algebra, modular forms and analytic number theory. We present a natural multiplicative theory of integer partitions (which are usually considered in terms of addition), and explore new classes of partition-theoretic zeta functions and Dirichlet series -- as well as Eulerian $q$-hypergeometric series -- enjoying many interesting relations. We find a number of theorems of classical number theory and analysis arise as particular cases of extremely general combinatorial structure laws. Among our applications, we prove explicit formulas for the coefficients of the $q$-bracket of Bloch-Okounkov, a partition-theoretic operator from statistical physics related to quasi-modular forms; we prove partition formulas for arithmetic densities of certain subsets of the integers, giving $q$-series formulas to evaluate the Riemann zeta function; we study $q$-hypergeometric series related to quantum modular forms and the strange function of Kontsevich; and we show how Ramanujans odd-order mock theta functions (and, more generally, the universal mock theta function $g_3$ of Gordon-McIntosh) arise from the reciprocal of the Jacobi triple product via the $q$-bracket operator, connecting also to unimodal sequences in combinatorics and quantum modular-like phenomena.
Rudnick and Wigman (Ann. Henri Poincar{e}, 2008; arXiv:math-ph/0702081) conjectured that the variance of the volume of the nodal set of arithmetic random waves on the $d$-dimensional torus is $O(E/mathcal{N})$, as $Etoinfty$, where $E$ is the energy and $mathcal{N}$ is the dimension of the eigenspace corresponding to $E$. Previous results have established this with stronger asymptotics when $d=2$ and $d=3$. In this brief note we prove an upper bound of the form $O(E/mathcal{N}^{1+alpha(d)-epsilon})$, for any $epsilon>0$ and $dgeq 4$, where $alpha(d)$ is positive and tends to zero with $d$. The power saving is the best possible with the current method (up to $epsilon$) when $dgeq 5$ due to the proof of the $ell^{2}$-decoupling conjecture by Bourgain and Demeter.