Do you want to publish a course? Click here

The second moment of symmetric square L-functions over Gaussian integers

98   0   0.0 ( 0 )
 Added by Olga Balkanova
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We prove a new upper bound on the second moment of Maass form symmetric square L-functions defined over Gaussian integers. Combining this estimate with the recent result of Balog-Biro-Cherubini-Laaksonen, we improve the error term in the prime geodesic theorem for the Picard manifold.



rate research

Read More

109 - Olga Balkanova 2019
We prove an asymptotic formula for the twisted first moment of Maass form symmetric square L-functions on the critical line and at the critical point. The error term is estimated uniformly with respect to all parameters.
We prove an asymptotic formula with a power saving error term for the (pure or mixed) second moment of central values of L-functions of any two (possibly equal) fixed cusp forms f, g twisted by all primitive characters modulo q, valid for all sufficiently factorable q including 99.9% of all admissible moduli. The two key ingredients are a careful spectral analysis of a potentially highly unbalanced shifted convolution problem in Hecke eigenvalues and power-saving bounds for sums of products of Kloosterman sums where the length of the sum is below the square-root threshold of the modulus. Applications are given to simultaneous non-vanishing and lower bounds on higher moments of twisted L-functions.
For a fairly general family of L-functions, we survey the known consequences of the existence of asymptotic formulas with power-sawing error term for the (twisted) first and second moments of the central values in the family. We then consider in detail the important special case of the family of twists of a fixed cusp form by primitive Dirichlet characters modulo a prime q, and prove that it satisfies such formulas. We derive arithmetic consequences: - a positive proportion of central values L(f x chi, 1/2) are non-zero, and indeed bounded from below; - there exist many characters chi for which the central L-value is very large; - the probability of a large analytic rank decays exponentially fast. We finally show how the second moment estimate establishes a special case of a conjecture of Mazur and Rubin concerning the distribution of modular symbols.
We establish sharp bounds for the second moment of symmetric-square $L$-functions attached to Hecke Maass cusp forms $u_j$ with spectral parameter $t_j$, where the second moment is a sum over $t_j$ in a short interval. At the central point $s=1/2$ of the $L$-function, our interval is smaller than previous known results. More specifically, for $|t_j|$ of size $T$, our interval is of size $T^{1/5}$, while the previous best was $T^{1/3}$ from work of Lam. A little higher up on the critical line, our second moment yields a subconvexity bound for the symmetric-square $L$-function. More specifically, we get subconvexity at $s=1/2+it$ provided $|t_j|^{6/7+delta}le |t| le (2-delta)|t_j|$ for any fixed $delta>0$. Since $|t|$ can be taken significantly smaller than $|t_j|$, this may be viewed as an approximation to the notorious subconvexity problem for the symmetric-square $L$-function in the spectral aspect at $s=1/2$.
118 - Olga Balkanova 2020
We prove a spectral decomposition formula for averages of Zagier L-series in terms of moments of symmetric square L-functions associated to Maass and holomorphic cusp forms of levels 4, 16, 64.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا