Do you want to publish a course? Click here

Pancharatnam-Zak phase

150   0   0.0 ( 0 )
 Added by Vivek Vyas
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The geometric phase acquired by an electron in a one-dimensional periodic lattice due to weak electric perturbation is found and referred to as the Pancharatnam-Zak phase. The underlying mathematical structure responsible for this phase is unveiled. As opposed to the well-known Zak phase, the Pancharatnam-Zak phase is a gauge invariant observable phase, and correctly characterizes the energy bands of the lattice. We demonstrate the gauge invariance of the Pancharatnam-Zak phase in two celebrated models displaying topological phases. A filled band generalization of this geometric phase is constructed and is observed to be sensitive to the Fermi-Dirac statistics of the band electrons. The measurement of the single-particle Pancharatnam-Zak phase in individual topological phases, as well as the statistical contribution in its many-particle generalization, should be accessible in various controlled quantum experiments.

rate research

Read More

Whenever a quantum system undergoes a cycle governed by a slow change of parameters, it acquires a phase factor: the geometric phase. Its most common formulations are known as the Aharonov-Bohm, Pancharatnam and Berry phases, but both prior and later manifestations exist. Though traditionally attributed to the foundations of quantum mechanics, the geometric phase has been generalized and became increasingly influential in many areas from condensed-matter physics and optics to high energy and particle physics and from fluid mechanics to gravity and cosmology. Interestingly, the geometric phase also offers unique opportunities for quantum information and computation. In this Review we first introduce the Aharonov-Bohm effect as an important realization of the geometric phase. Then we discuss in detail the broader meaning, consequences and realizations of the geometric phase emphasizing the most important mathematical methods and experimental techniques used in the study of geometric phase, in particular those related to recent works in optics and condensed-matter physics.
Berrys geometric phase naturally appears when a quantum system is driven by an external field whose parameters are slowly and cyclically changed. A variation in the coupling between the system and the external field can also give rise to a geometric phase, even when the field is in the vacuum state or any other Fock state. Here we demonstrate the appearance of a vacuum-induced Berry phase in an artificial atom, a superconducting transmon, interacting with a single mode of a microwave cavity. As we vary the phase of the interaction, the artificial atom acquires a geometric phase determined by the path traced out in the combined Hilbert space of the atom and the quantum field. Our ability to control this phase opens new possibilities for the geometric manipulation of atom-cavity systems also in the context of quantum information processing.
76 - J. M. Fink , A. Dombi , A. Vukics 2016
Non-equilibrium phase transitions exist in damped-driven open quantum systems, when the continuous tuning of an external parameter leads to a transition between two robust steady states. In second-order transitions this change is abrupt at a critical point, whereas in first-order transitions the two phases can co-exist in a critical hysteresis domain. Here we report the observation of a first-order dissipative quantum phase transition in a driven circuit quantum electrodynamics (QED) system. It takes place when the photon blockade of the driven cavity-atom system is broken by increasing the drive power. The observed experimental signature is a bimodal phase space distribution with varying weights controlled by the drive strength. Our measurements show an improved stabilization of the classical attractors up to the milli-second range when the size of the quantum system is increased from one to three artificial atoms. The formation of such robust pointer states could be used for new quantum measurement schemes or to investigate multi-photon quantum many-body phases.
A precise measurement of dephasing over a range of timescales is critical for improving quantum gates beyond the error correction threshold. We present a metrological tool, based on randomized benchmarking, capable of greatly increasing the precision of Ramsey and spin echo sequences by the repeated but incoherent addition of phase noise. We find our SQUID-based qubit is not limited by $1/f$ flux noise at short timescales, but instead observe a telegraph noise mechanism that is not amenable to study with standard measurement techniques.
The parametric phase-locked oscillator (PPLO), also known as a parametron, is a resonant circuit in which one of the reactances is periodically modulated. It can detect, amplify, and store binary digital signals in the form of two distinct phases of self-oscillation. Indeed, digital computers using PPLOs based on a magnetic ferrite ring or a varactor diode as its fundamental logic element were successfully operated in 1950s and 1960s. More recently, basic bit operations have been demonstrated in an electromechanical resonator, and an Ising machine based on optical PPLOs has been proposed. Here, using a PPLO realized with Josephson-junction circuitry, we demonstrate the demodulation of a microwave signal digitally modulated by binary phase-shift keying. Moreover, we apply this demodulation capability to the dispersive readout of a superconducting qubit. This readout scheme enables a fast and latching-type readout, yet requires only a small number of readout photons in the resonator to which the qubit is coupled, thus featuring the combined advantages of several disparate schemes. We have achieved high-fidelity, single-shot, and non-destructive qubit readout with Rabi-oscillation contrast exceeding 90%, limited primarily by the qubits energy relaxation.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا