Do you want to publish a course? Click here

Josephson parametric phase-locked oscillator and its application to dispersive readout of superconducting qubits

137   0   0.0 ( 0 )
 Added by Lin Zhirong
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

The parametric phase-locked oscillator (PPLO), also known as a parametron, is a resonant circuit in which one of the reactances is periodically modulated. It can detect, amplify, and store binary digital signals in the form of two distinct phases of self-oscillation. Indeed, digital computers using PPLOs based on a magnetic ferrite ring or a varactor diode as its fundamental logic element were successfully operated in 1950s and 1960s. More recently, basic bit operations have been demonstrated in an electromechanical resonator, and an Ising machine based on optical PPLOs has been proposed. Here, using a PPLO realized with Josephson-junction circuitry, we demonstrate the demodulation of a microwave signal digitally modulated by binary phase-shift keying. Moreover, we apply this demodulation capability to the dispersive readout of a superconducting qubit. This readout scheme enables a fast and latching-type readout, yet requires only a small number of readout photons in the resonator to which the qubit is coupled, thus featuring the combined advantages of several disparate schemes. We have achieved high-fidelity, single-shot, and non-destructive qubit readout with Rabi-oscillation contrast exceeding 90%, limited primarily by the qubits energy relaxation.



rate research

Read More

Developing fast and accurate control and readout techniques is an important challenge in quantum information processing with semiconductor qubits. Here, we study the dynamics and the coherence properties of a GaAs/AlGaAs double quantum dot (DQD) charge qubit strongly coupled to a high-impedance SQUID array resonator. We drive qubit transitions with synthesized microwave pulses and perform qubit readout through the state dependent frequency shift imparted by the qubit on the dispersively coupled resonator. We perform Rabi oscillation, Ramsey fringe, energy relaxation and Hahn-echo measurements and find significantly reduced decoherence rates down to $gamma_2/2pisim 3,rm{MHz}$ corresponding to coherence times of up to $T_2 sim 50 , rm{ns}$ for charge states in gate defined quantum dot qubits.
We analyze a readout scheme for Majorana qubits based on dispersive coupling to a resonator. We consider two variants of Majorana qubits: the Majorana transmon and the Majorana box qubit. In both cases, the qubit-resonator interaction can produce sizeable dispersive shifts in the MHz range for reasonable system parameters, allowing for submicrosecond readout with high fidelity. For Majorana transmons, the light-matter interaction used for readout manifestly conserves Majorana parity, which leads to a notion of quantum nondemolition (QND) readout that is stronger than for conventional charge qubits. In contrast, Majorana box qubits only recover an approximately QND readout mechanism in the dispersive limit where the resonator detuning is large. We also compare dispersive readout to longitudinal readout for the Majorana box qubit. We show that the latter gives faster and higher fidelity readout for reasonable parameters, while having the additional advantage of being manifestly QND, and so may prove to be a better readout mechanism for these systems.
An important desired ingredient of superconducting quantum circuits is a readout scheme whose complexity does not increase with the number of qubits involved in the measurement. Here, we present a readout scheme employing a single microwave line, which enables simultaneous readout of multiple qubits. Consequently, scaling up superconducting qubit circuits is no longer limited by the readout apparatus. Parallel readout of 6 flux qubits using a frequency division multiplexing technique is demonstrated, as well as simultaneous manipulation and time resolved measurement of 3 qubits. We discuss how this technique can be scaled up to read out hundreds of qubits on a chip.
We show how the dynamical modulation of the qubit-field coupling strength in a circuit quantum electrodynamics architecture mimics the motion of the qubit at relativistic speeds. This allows us to propose a realistic experiment to detect microwave photons coming from simulated acceleration radiation. Moreover, by combining this technique with the dynamical Casimir physics, we enhance the toolbox for studying relativistic phenomena in quantum field theory with superconducting circuits.
388 - Matthew Reed 2013
A quantum computer will use the properties of quantum physics to solve certain computational problems much faster than otherwise possible. One promising potential implementation is to use superconducting quantum bits in the circuit quantum electrodynamics (cQED) architecture. There, the low energy states of a nonlinear electronic oscillator are isolated and addressed as a qubit. These qubits are capacitively coupled to the modes of a microwave-frequency transmission line resonator which serves as a quantum communication bus. Microwave electrical pulses are applied to the resonator to manipulate or measure the qubit state. State control is calibrated using diagnostic sequences that expose systematic errors. Hybridization of the resonator with the qubit gives it a nonlinear response when driven strongly, useful for amplifying the measurement signal to enhance accuracy. Qubits coupled to the same bus may coherently interact with one another via the exchange of virtual photons. A two-qubit conditional phase gate mediated by this interaction can deterministically entangle its targets, and is used to generate two-qubit Bell states and three-qubit GHZ states. These three-qubit states are of particular interest because they redundantly encode quantum information. They are the basis of the quantum repetition code prototypical of more sophisticated schemes required for quantum computation. Using a three-qubit Toffoli gate, this code is demonstrated to autonomously correct either bit- or phase-flip errors. Despite observing the expected behavior, the overall fidelity is low because of decoherence. A superior implementation of cQED replaces the transmission-line resonator with a three-dimensional box mode, increasing lifetimes by an order of magnitude. In-situ qubit frequency control is enabled with control lines, which are used to fully characterize and control the system Hamiltonian.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا