No Arabic abstract
Berrys geometric phase naturally appears when a quantum system is driven by an external field whose parameters are slowly and cyclically changed. A variation in the coupling between the system and the external field can also give rise to a geometric phase, even when the field is in the vacuum state or any other Fock state. Here we demonstrate the appearance of a vacuum-induced Berry phase in an artificial atom, a superconducting transmon, interacting with a single mode of a microwave cavity. As we vary the phase of the interaction, the artificial atom acquires a geometric phase determined by the path traced out in the combined Hilbert space of the atom and the quantum field. Our ability to control this phase opens new possibilities for the geometric manipulation of atom-cavity systems also in the context of quantum information processing.
We consider a dissipative evolution of parametrically-driven qubits-cavity system under the periodical modulation of coupling energy between two subsystems, which leads to the amplification of counterrotating processes. We reveal a very rich dynamical behavior of this hybrid system. In particular, we find that the energy dissipation in one of the subsystems can enhance quantum effects in another subsystem. For instance, optimal cavity decay assists to stabilize entanglement and quantum correlations between qubits even in the steady state and to compensate finite qubit relaxation. On the contrary, energy dissipation in qubit subsystem results in the enhanced photon production from vacuum for strong modulation, but destroys both quantum concurrence and quantum mutual information between qubits. Our results provide deeper insights to nonstationary cavity quantum electrodynamics in context of quantum information processing and might be of importance for dissipative quantum state engineering.
Measurement plays a quintessential role in the control of quantum systems. Beyond initialization and readout which pertain to projective measurements, weak measurements in particular, through their back-action on the system, may enable various levels of coherent control. The latter ranges from observing quantum trajectories to state dragging and steering. Furthermore, just like the adiabatic evolution of quantum states that is known to induce the Berry phase, sequential weak measurements may lead to path-dependent geometric phases. Here we measure the geometric phases induced by sequences of weak measurements and demonstrate a topological transition in the geometric phase controlled by measurement strength. This connection between weak measurement induced quantum dynamics and topological transitions reveals subtle topological features in measurement-based manipulation of quantum systems. Our protocol could be implemented for classes of operations (e.g. braiding) which are topological in nature. Furthermore, our results open new horizons for measurement-enabled quantum control of many-body topological states.
In our previous work it has been shown the possibility to use the Aharonov-Anandan invariant as a tool in the analysis of disparate systems, including Hawking and Unruh effects, as well as graphene physics and thermal states. We show that the vacuum condensation, characterizing such systems, is also related with geometric phases and we analyze the properties of the geometric phase of systems represented by mixed state and undergoing a nonunitary evolution. In particular, we consider two level atoms accelerated by an external potential and interacting with a thermal state. We propose the realization of Mach-Zehnder interferometers which can prove the existence of the Unruh effect and can allow very precise measurements of temperature.
Quantum jumps of a qubit are usually observed between its energy eigenstates, also known as its longitudinal pseudo-spin component. Is it possible, instead, to observe quantum jumps between the transverse superpositions of these eigenstates? We answer positively by presenting the first continuous quantum nondemolition measurement of the transverse component of an individual qubit. In a circuit QED system irradiated by two pump tones, we engineer an effective Hamiltonian whose eigenstates are the transverse qubit states, and a dispersive measurement of the corresponding operator. Such transverse component measurements are a useful tool in the driven-dissipative operation engineering toolbox, which is central to quantum simulation and quantum error correction.
Quantum fluctuations of the electromagnetic vacuum are responsible for physical effects such as the Casimir force and the radiative decay of atoms, and set fundamental limits on the sensitivity of measurements. Entanglement between photons can produce correlations that result in a reduction of these fluctuations below the vacuum level allowing measurements that surpass the standard quantum limit in sensitivity. Here we demonstrate that the radiative decay rate of an atom that is coupled to quadrature squeezed electromagnetic vacuum can be reduced below its natural linewidth. We observe a two-fold reduction of the transverse radiative decay rate of a superconducting artificial atom coupled to continuum squeezed vacuum generated by a Josephson parametric amplifier, allowing the transverse coherence time T_2 to exceed the vacuum decay limit of 2T_1. We demonstrate that the measured radiative decay dynamics can be used to tomographically reconstruct the Wigner distribution of the the itinerant squeezed state. Our results are the first confirmation of a canonical prediction of quantum optics and open the door to new studies of the quantum light-matter interaction.