Do you want to publish a course? Click here

Electronic structure of interstitial hydrogen in In-Ga-Zn-O semiconductor simulated by muon

68   0   0.0 ( 0 )
 Added by Ryosuke Kadono
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on the local electronic structure of interstitial muon (Mu) as pseudo-hydrogen in In-Ga-Zn oxide (IGZO) semiconductor studied by muon spin rotation/relaxation ($mu$SR) experiment. In polycrystalline (c-) IGZO, it is inferred that Mu is in a diamagnetic state, where the $mu$SR time spectra under zero external field is perfectly described by the Gaussian Kubo-Toyabe relaxation function with the linewidth $Delta$ serving as a sensitive measure for the random local fields from In/Ga nuclear magnetic moments. The magnitude of $Delta$ combined with the density functional theory calculations for H (to mimic Mu) suggests that Mu occupies Zn-O bond-center site (Mu$_{rm BC}$) similar to the case in crystalline ZnO. This implies that the diamagnetic state in c-IGZO corresponds to Mu$_{rm BC}^+$, thus serving as an electron donor. In amorphous (a-) IGZO, the local Mu structure in as-deposited films is nearly identical with that in c-IGZO, suggesting Mu$_{rm BC}^+$ for the electronic state. In contrast, the diamagnetic signal in heavily hydrogenated a-IGZO films exhibits the Lorentzian Kubo-Toyabe relaxation, implying that Mu accompanies more inhomogeneous distribution of the neighboring nuclear spins that may involve Mu$^-$H$^-$-complex state in an oxygen vacancy.



rate research

Read More

The electronic structure of interstitial hydrogen in a compound semiconductor FeS$_2$ (naturally $n$-type) is inferred from a muon study. An implanted muon (Mu, a pseudo-hydrogen) forms electronically different defect centers discerned by the hyperfine parameter ($omega_{rm hf}$). A body of evidence indicates that one muon is situated at the center of an iron-cornered tetrahedron with nearly isotropic $omega_{rm hf}$ (Mu$_{rm p}$), and that the other exists as a diamagnetic state (Mu$_{rm d}$, $omega_{rm hf}simeq 0$). Their response to thermal agitation indicates that the Mu$_{rm d}$ center accompanies a shallow level (donor or acceptor) understood by effective mass model while the electronic structure of Mu$_{rm p}$ center is more isolated from host than Mu$_{rm d}$ to form a deeper donor level. These observations suggest that interstitial hydrogen also serves as an electronically active impurity in FeS$_2$. Based on earlier reports on the hydrogen diffusion in FeS$_2$, possibility of fast diffusion for Mu$_{rm p}$ leading to formation of a complex defect state (Mu$^*_{rm d}$, $Tle 100$ K) or to motional narrowing state (Mu$^*_{rm p}$, $Tge 150$ K) is also discussed.
The sub-gap density of states of amorphous indium gallium zinc oxide ($a$-IGZO) is obtained using the ultrabroadband photoconduction (UBPC) response of thin-film transistors (TFTs). Density functional theory simulations classify the origin of the measured sub-gap density of states peaks as a series of donor-like oxygen vacancy states and acceptor-like Zn vacancy states. Donor peaks are found both near the conduction band and deep in the sub-gap, with peak densities of $10^{17}-10^{18}$ cm$^{-3}$eV$^{-1}$. Two deep acceptor-like metal vacancy peaks with peak densities in the range of $10^{18}$ cm$^{-3}$eV$^{-1}$ and lie adjacent to the valance band Urbach tail region at 2.0 to 2.5 eV below the conduction band edge. By applying detailed charge balance, we show increasing the density of metal vacancy deep-acceptors strongly shifts the $a$-IGZO TFT threshold voltage to more positive values. Photoionization (h$ u$ > 2.0 eV) of metal vacancy acceptors is one cause of transfer curve hysteresis in $a$-IGZO TFTs owing to longer recombination lifetimes as they get captured into acceptor-like vacancies.
The search for new wide band gap materials is intensifying to satisfy the need for more advanced and energy efficient power electronic devices. Ga$_2$O$_3$ has emerged as an alternative to SiC and GaN, sparking a renewed interest in its fundamental properties beyond the main $beta$-phase. Here, three polymorphs of Ga$_2$O$_3$, $alpha$, $beta$ and $varepsilon$, are investigated using X-ray diffraction, X-ray photoelectron and absorption spectroscopy, and ab initio theoretical approaches to gain insights into their structure - electronic structure relationships. Valence and conduction electronic structure as well as semi-core and core states are probed, providing a complete picture of the influence of local coordination environments on the electronic structure. State-of-the-art electronic structure theory, including all-electron density functional theory and many-body perturbation theory, provide detailed understanding of the spectroscopic results. The calculated spectra provide very accurate descriptions of all experimental spectra and additionally illuminate the origin of observed spectral features. This work provides a strong basis for the exploration of the Ga$_2$O$_3$ polymorphs as materials at the heart of future electronic device generations.
We perform detailed muon spin rotation ($mu$SR) measurements in the classic antiferromagnet Fe$_2$O$_3$ and explain the spectra by considering dynamic population and dissociation of charge-neutral muon-polaron complexes. We show that charge-neutral muon states in Fe$_2$O$_3$, despite lacking the signatures typical of charge-neutral muonium centers in nonmagnetic materials, have a significant impact on the measured $mu$SR frequencies and relaxation rates. Our identification of such polaronic muon centers in Fe$_2$O$_3$ suggests that isolated hydrogen (H) impurities form analogous complexes, and that H interstitials may be a source of charge carrier density in Fe$_2$O$_3$.
The electronic structure of the Cr ions in the diluted ferromagnetic semiconductor Zn$_{1-x}$Cr$_x$Te ($x=0.03$ and 0.15) thin films has been investigated using x-ray magnetic circular dichroism (XMCD) and photoemission spectroscopy (PES). Magnetic-field ($H$) and temperature ($T$) dependences of the Cr $2p$ XMCD spectra well correspond to the magnetization measured by a SQUID magnetometer. The line shape of the Cr $2p$ XMCD spectra is independent of $H$, $T$, and $x$, indicating that the ferromagnetism is originated from the same electronic states of the Cr ion. Cluster-model analysis indicates that although there are two or more kinds of Cr ions in the Zn$_{1-x}$Cr$_x$Te samples, the ferromagnetic XMCD signal is originated from Cr ions substituted for the Zn site. The Cr 3d partial density of states extracted using Cr $2p to 3d$ resonant PES shows a broad feature near the top of the valence band, suggesting strong $s$,$p$-$d$ hybridization. No density of states is detected at the Fermi level, consistent with their insulating behavior. Based on these findings, we conclude that double exchange mechanism cannot explain the ferromagnetism in Zn$_{1-x}$Cr$_{x}$Te.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا