No Arabic abstract
We perform detailed muon spin rotation ($mu$SR) measurements in the classic antiferromagnet Fe$_2$O$_3$ and explain the spectra by considering dynamic population and dissociation of charge-neutral muon-polaron complexes. We show that charge-neutral muon states in Fe$_2$O$_3$, despite lacking the signatures typical of charge-neutral muonium centers in nonmagnetic materials, have a significant impact on the measured $mu$SR frequencies and relaxation rates. Our identification of such polaronic muon centers in Fe$_2$O$_3$ suggests that isolated hydrogen (H) impurities form analogous complexes, and that H interstitials may be a source of charge carrier density in Fe$_2$O$_3$.
We report a comprehensive muon spin rotation ($mu$SR) study of the prototypical magnetoelectric antiferromagnet Cr$_2$O$_3$. We find the positively charged muon ($mu^+$) occupies several distinct interstitial sites, and displays a rich dynamic behavior involving local hopping, thermally activated site transitions and the formation of a charge-neutral complex composed of a muon and an electron polaron. The discovery of such a complex has implications for the interpretation of $mu$SR spectra in a wide range of magnetic oxides, and opens a route to study the dopant characteristics of interstitial hydrogen impurities in such materials. We address implications arising from implanting a $mu^+$ into a linear magnetoelectric, and discuss the challenges of observing a local magnetoelectric effect generated by the charge of the muon.
The search for new wide band gap materials is intensifying to satisfy the need for more advanced and energy efficient power electronic devices. Ga$_2$O$_3$ has emerged as an alternative to SiC and GaN, sparking a renewed interest in its fundamental properties beyond the main $beta$-phase. Here, three polymorphs of Ga$_2$O$_3$, $alpha$, $beta$ and $varepsilon$, are investigated using X-ray diffraction, X-ray photoelectron and absorption spectroscopy, and ab initio theoretical approaches to gain insights into their structure - electronic structure relationships. Valence and conduction electronic structure as well as semi-core and core states are probed, providing a complete picture of the influence of local coordination environments on the electronic structure. State-of-the-art electronic structure theory, including all-electron density functional theory and many-body perturbation theory, provide detailed understanding of the spectroscopic results. The calculated spectra provide very accurate descriptions of all experimental spectra and additionally illuminate the origin of observed spectral features. This work provides a strong basis for the exploration of the Ga$_2$O$_3$ polymorphs as materials at the heart of future electronic device generations.
The electronic structure and magnetic properties of the strongly correlated material La$_2$O$_3$Fe$_2$Se$_2$ are studied by using both the density function theory plus $U$ (DFT+$U$) method and the DFT plus Gutzwiller (DFT+G) variational method. The ground-state magnetic structure of this material obtained with DFT+$U$ is consistent with recent experiments, but its band gap is significantly overestimated by DFT+$U$, even with a small Hubbard $U$ value. In contrast, the DFT+G method yields a band gap of 0.1 - 0.2 eV, in excellent agreement with experiment. Detailed analysis shows that the electronic and magnetic properties of of La$_2$O$_3$Fe$_2$Se$_2$ are strongly affected by charge and spin fluctuations which are missing in the DFT+$U$ method.
Cuprous oxide has been conceived as a potential alternative to traditional organic hole transport layers in hybrid halide perovskite-based solar cells. Device simulations predict record efficiencies using this semiconductor, but experimental results do not yet show this trend. More detailed knowledge about the Cu$_2$O/perovskite interface is mandatory to improve the photoconversion efficiency. Using density functional theory calculations, here we study the interfaces of CH$_3$NH$_3$PbI$_3$ with Cu$_2$O to assess their influence on device performance. Several atomistic models of these interfaces are provided for the first time, considering different compositions of the interface atomic planes. The interface electronic properties are discussed on the basis of the optimal theoretical situation, but in connection with the experimental realizations and device simulations. It is shown that the formation of vacancies in the Cu$_2$O terminating planes is essential to eliminate dangling bonds and trap states. The four interface models that fulfill this condition present a band alignment favorable for photovoltaic conversion. Energy of adhesion, and charge transfer across the interfaces are also studied. The termination of CH$_3$NH$_3$PbI$_3$ in PbI$_2$ atomic planes seems optimal to maximize the photoconversion efficiency.
I use first principles calculations to investigate the thermal conductivity of $beta$-In$_2$O$_3$ and compare the results with that of $alpha$-Al$_2$O$_3$, $beta$-Ga$_2$O$_3$, and KTaO$_3$. The calculated thermal conductivity of $beta$-In$_2$O$_3$ agrees well with the experimental data obtain recently, which found that the low-temperature thermal conductivity in this material can reach values above 1000 W/mK. I find that the calculated thermal conductivity of $beta$-Ga$_2$O$_3$ is larger than that of $beta$-In$_2$O$_3$ at all temperatures, which implies that $beta$-Ga$_2$O$_3$ should also exhibit high values of thermal conductivity at low temperatures. The thermal conductivity of KTaO$_3$ calculated ignoring the temperature-dependent phonon softening of low-frequency modes give high-temperature values similar that of $beta$-Ga$_2$O$_3$. However, the calculated thermal conductivity of KTaO$_3$ does not increase as steeply as that of the binary compounds at low temperatures, which results in KTaO$_3$ having the lowest low-temperature thermal conductivity despite having acoustic phonon velocities larger than that of $beta$-Ga$_2$O$_3$ and $beta$-In$_2$O$_3$. I attribute this to the fact that the acoustic phonon velocities at low frequencies in KTaO$_3$ is less uniformly distributed because its acoustic phonon branches are more dispersive compared to the binary oxides, which causes enhanced momentum loss even during the normal phonon-phonon scattering processes. I also calculate thermal diffusivity using the theoretically obtained thermal conductivity and heat capacity and find that all four materials exhibit the expected $T^{-1}$ behavior at high temperatures. Additionally, the calculated ratio of the average phonon scattering time to Planckian time is larger than the lower bound of 1 that has been observed empirically in numerous other materials.