Do you want to publish a course? Click here

Ultrabroadband Density of States of Amorphous In-Ga-Zn-O

83   0   0.0 ( 0 )
 Added by Matt Graham
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The sub-gap density of states of amorphous indium gallium zinc oxide ($a$-IGZO) is obtained using the ultrabroadband photoconduction (UBPC) response of thin-film transistors (TFTs). Density functional theory simulations classify the origin of the measured sub-gap density of states peaks as a series of donor-like oxygen vacancy states and acceptor-like Zn vacancy states. Donor peaks are found both near the conduction band and deep in the sub-gap, with peak densities of $10^{17}-10^{18}$ cm$^{-3}$eV$^{-1}$. Two deep acceptor-like metal vacancy peaks with peak densities in the range of $10^{18}$ cm$^{-3}$eV$^{-1}$ and lie adjacent to the valance band Urbach tail region at 2.0 to 2.5 eV below the conduction band edge. By applying detailed charge balance, we show increasing the density of metal vacancy deep-acceptors strongly shifts the $a$-IGZO TFT threshold voltage to more positive values. Photoionization (h$ u$ > 2.0 eV) of metal vacancy acceptors is one cause of transfer curve hysteresis in $a$-IGZO TFTs owing to longer recombination lifetimes as they get captured into acceptor-like vacancies.



rate research

Read More

Point defects in crystalline materials often occur in multiple charge states. Although many experimental methods to study and explore point defects are available, techniques to explore the non-equilibrium dynamics of the charge states of these defects at ultrafast (sub-nanosecond) time scales have not been discussed before. We present results from ultrafast optical-pump supercontinuum-probe spectroscopy measurements on $beta$-Ga$_2$O$_3$. The study of point defects in $beta$-Ga$_2$O$_3$ is essential for its establishment as a material platform for high-power electronics and deep-UV optoelectronics. Use of a supercontinuum probe allows us to obtain the time-resolved absorption spectra of material defects under non-equilibrium conditions with picosecond time resolution. The probe absorption spectra shows defect absorption peaks at two energies, $sim$2.2 eV and $sim$1.63 eV, within the 1.3-2.5 eV probe energy bandwidth. The strength of the absorption associated with each peak is time-dependent and the spectral weight shifts from the lower energy peak to the higher energy peak with pump-probe delay. Further, maximum defect absorption is seen for probe polarized along the crystal c-axis. The time-dependent probe absorption spectra and the observed dynamics for all probe wavelengths at all pump-probe delays can be fit with a set of rate equations for a single multi-level defect. Based on first-principles calculations within hybrid density functional theory we attribute the observed absorption features to optical transitions from the valence band to different charge states of Gallium vacancies. Our results demonstrate that broadband ultrafast supercontinuum spectroscopy can be a useful tool to explore charge states of defects and defect dynamics in semiconductors.
The Mg-Zn and Al-Zn binary alloys have been investigated theoretically under static isotropic pressure. The stable phases of these binaries on both initially hexagonal-close-packed (HCP) and face-centered-cubic (FCC) lattices have been determined by utilizing an iterative approach that uses a configurational cluster expansion method, Monte Carlo search algorithm, and density functional theory (DFT) calculations. Based on 64-atom models, it is shown that the most stable phases of the Mg-Zn binary alloy under ambient condition are $rm MgZn_3$, $rm Mg_{19}Zn_{45}$, $rm MgZn$, and $rm Mg_{34}Zn_{30}$ for the HCP, and $rm MgZn_3$ and $rm MgZn$ for the FCC lattice, whereas the Al-Zn binary is energetically unfavorable throughout the entire composition range for both the HCP and FCC lattices under all conditions. By applying an isotropic pressure in the HCP lattice, $rm Mg_{19}Zn_{45}$ turns into an unstable phase at P$approx$$10$~GPa, a new stable phase $rm Mg_{3}Zn$ appears at P$gtrsim$$20$~GPa, and $rm Mg_{34}Zn_{30}$ becomes unstable for P$gtrsim$$30$~GPa. For FCC lattice, the $rm Mg_{3}Zn$ phase weakly touches the convex hull at P$gtrsim$$20$~GPa while the other stable phases remain intact up to $approx$$120$~GPa. Furthermore, making use of the obtained DFT results, bulk modulus has been computed for several compositions up to pressure values of the order of $approx$$120$~GPa. The findings suggest that one can switch between $rm Mg$-rich and $rm Zn$-rich early-stage clusters simply by applying external pressure. $rm Zn$-rich alloys and precipitates are more favorable in terms of stiffness and stability against external deformation.
We report on the local electronic structure of interstitial muon (Mu) as pseudo-hydrogen in In-Ga-Zn oxide (IGZO) semiconductor studied by muon spin rotation/relaxation ($mu$SR) experiment. In polycrystalline (c-) IGZO, it is inferred that Mu is in a diamagnetic state, where the $mu$SR time spectra under zero external field is perfectly described by the Gaussian Kubo-Toyabe relaxation function with the linewidth $Delta$ serving as a sensitive measure for the random local fields from In/Ga nuclear magnetic moments. The magnitude of $Delta$ combined with the density functional theory calculations for H (to mimic Mu) suggests that Mu occupies Zn-O bond-center site (Mu$_{rm BC}$) similar to the case in crystalline ZnO. This implies that the diamagnetic state in c-IGZO corresponds to Mu$_{rm BC}^+$, thus serving as an electron donor. In amorphous (a-) IGZO, the local Mu structure in as-deposited films is nearly identical with that in c-IGZO, suggesting Mu$_{rm BC}^+$ for the electronic state. In contrast, the diamagnetic signal in heavily hydrogenated a-IGZO films exhibits the Lorentzian Kubo-Toyabe relaxation, implying that Mu accompanies more inhomogeneous distribution of the neighboring nuclear spins that may involve Mu$^-$H$^-$-complex state in an oxygen vacancy.
Terahertz electromagnetic radiation is extremely useful for numerous applications such as imaging and spectroscopy. Therefore, it is highly desirable to have an efficient table-top emitter covering the 1-to-30-THz window whilst being driven by a low-cost, low-power femtosecond laser oscillator. So far, all solid-state emitters solely exploit physics related to the electron charge and deliver emission spectra with substantial gaps. Here, we take advantage of the electron spin to realize a conceptually new terahertz source which relies on tailored fundamental spintronic and photonic phenomena in magnetic metal multilayers: ultrafast photo-induced spin currents, the inverse spin-Hall effect and a broadband Fabry-Perot resonance. Guided by an analytical model, such spintronic route offers unique possibilities for systematic optimization. We find that a 5.8-nm-thick W/CoFeB/Pt trilayer generates ultrashort pulses fully covering the 1-to-30-THz range. Our novel source outperforms laser-oscillator-driven emitters such as ZnTe(110) crystals in terms of bandwidth, terahertz-field amplitude, flexibility, scalability and cost.
Self-assembled monolayers (SAMs) have been used to improve both the positive and negative bias-stress stability of amorphous indium gallium zinc oxide (IGZO) bottom gate thin film transistors (TFTs). N-hexylphosphonic acid (HPA) and fluorinated hexylphosphonic acid (FPA) SAMs adsorbed on IGZO back channel surfaces were shown to significantly reduce bias stress turn-on voltage shifts compared to IGZO back channel surfaces with no SAMs. FPA was found to have a lower surface energy and lower packing density than HPA, as well as lower bias stress turn-on voltage shifts. The improved stability of IGZO TFTs with SAMs can be primarily attributed to a reduction in molecular adsorption of contaminants on the IGZO back channel surface and minimal trapping states present with phosphonic acid binding to the IGZO surface.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا