No Arabic abstract
Principles of modern cyber-physical system (CPS) analysis are based on analytical methods that depend on whether safety or liveness requirements are considered. Complexity is abstracted through different techniques, ranging from stochastic modelling to contracts. However, both distributed heuristics and Artificial Intelligence (AI)-based approaches as well as the user perspective or unpredictable effects, such as accidents or the weather, introduce enough uncertainty to warrant reinforcement-learning-based approaches. This paper compares traditional approaches in the domain of CPS modelling and analysis with the AI researcher perspective to exploring unknown complex systems.
This article conducts a literature review of current and future challenges in the use of artificial intelligence (AI) in cyber physical systems. The literature review is focused on identifying a conceptual framework for increasing resilience with AI through automation supporting both, a technical and human level. The methodology applied resembled a literature review and taxonomic analysis of complex internet of things (IoT) interconnected and coupled cyber physical systems. There is an increased attention on propositions on models, infrastructures and frameworks of IoT in both academic and technical papers. These reports and publications frequently represent a juxtaposition of other related systems and technologies (e.g. Industrial Internet of Things, Cyber Physical Systems, Industry 4.0 etc.). We review academic and industry papers published between 2010 and 2020. The results determine a new hierarchical cascading conceptual framework for analysing the evolution of AI decision-making in cyber physical systems. We argue that such evolution is inevitable and autonomous because of the increased integration of connected devices (IoT) in cyber physical systems. To support this argument, taxonomic methodology is adapted and applied for transparency and justifications of concepts selection decisions through building summary maps that are applied for designing the hierarchical cascading conceptual framework.
Multiple governmental agencies and private organisations have made commitments for the colonisation of Mars. Such colonisation requires complex systems and infrastructure that could be very costly to repair or replace in cases of cyber attacks. This paper surveys deep learning algorithms, IoT cyber security and risk models, and established mathematical formulas to identify the best approach for developing a dynamic and self adapting system for predictive cyber risk analytics supported with Artificial Intelligence and Machine Learning and real time intelligence in edge computing. The paper presents a new mathematical approach for integrating concepts for cognition engine design, edge computing and Artificial Intelligence and Machine Learning to automate anomaly detection. This engine instigates a step change by applying Artificial Intelligence and Machine Learning embedded at the edge of IoT networks, to deliver safe and functional real time intelligence for predictive cyber risk analytics. This will enhance capacities for risk analytics and assists in the creation of a comprehensive and systematic understanding of the opportunities and threats that arise when edge computing nodes are deployed, and when Artificial Intelligence and Machine Learning technologies are migrated to the periphery of the internet and into local IoT networks.
Artificial intelligence (AI) has significant potential to positively impact and advance medical imaging, including positron emission tomography (PET) imaging applications. AI has the ability to enhance and optimize all aspects of the PET imaging chain from patient scheduling, patient setup, protocoling, data acquisition, detector signal processing, reconstruction, image processing and interpretation. AI poses industry-specific challenges which will need to be addressed and overcome to maximize the future potentials of AI in PET. This paper provides an overview of these industry-specific challenges for the development, standardization, commercialization, and clinical adoption of AI, and explores the potential enhancements to PET imaging brought on by AI in the near future. In particular, the combination of on-demand image reconstruction, AI, and custom designed data processing workflows may open new possibilities for innovation which would positively impact the industry and ultimately patients.
Modern vehicles have multiple electronic control units (ECUs) that are connected together as part of a complex distributed cyber-physical system (CPS). The ever-increasing communication between ECUs and external electronic systems has made these vehicles particularly susceptible to a variety of cyber-attacks. In this work, we present a novel anomaly detection framework called TENET to detect anomalies induced by cyber-attacks on vehicles. TENET uses temporal convolutional neural networks with an integrated attention mechanism to detect anomalous attack patterns. TENET is able to achieve an improvement of 32.70% in False Negative Rate, 19.14% in the Mathews Correlation Coefficient, and 17.25% in the ROC-AUC metric, with 94.62% fewer model parameters, 86.95% decrease in memory footprint, and 48.14% lower inference time when compared to the best performing prior work on automotive anomaly detection.
Artificial intelligence (AI) has witnessed a substantial breakthrough in a variety of Internet of Things (IoT) applications and services, spanning from recommendation systems to robotics control and military surveillance. This is driven by the easier access to sensory data and the enormous scale of pervasive/ubiquitous devices that generate zettabytes (ZB) of real-time data streams. Designing accurate models using such data streams, to predict future insights and revolutionize the decision-taking process, inaugurates pervasive systems as a worthy paradigm for a better quality-of-life. The confluence of pervasive computing and artificial intelligence, Pervasive AI, expanded the role of ubiquitous IoT systems from mainly data collection to executing distributed computations with a promising alternative to centralized learning, presenting various challenges. In this context, a wise cooperation and resource scheduling should be envisaged among IoT devices (e.g., smartphones, smart vehicles) and infrastructure (e.g. edge nodes, and base stations) to avoid communication and computation overheads and ensure maximum performance. In this paper, we conduct a comprehensive survey of the recent techniques developed to overcome these resource challenges in pervasive AI systems. Specifically, we first present an overview of the pervasive computing, its architecture, and its intersection with artificial intelligence. We then review the background, applications and performance metrics of AI, particularly Deep Learning (DL) and online learning, running in a ubiquitous system. Next, we provide a deep literature review of communication-efficient techniques, from both algorithmic and system perspectives, of distributed inference, training and online learning tasks across the combination of IoT devices, edge devices and cloud servers. Finally, we discuss our future vision and research challenges.