Do you want to publish a course? Click here

High-temperature spin dynamics in the Heisenberg chain: Magnon propagation and emerging KPZ-scaling in the zero-magnetization limit

124   0   0.0 ( 0 )
 Added by Felix Weiner
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The large-scale dynamics of quantum integrable systems is often dominated by ballistic modes due to the existence of stable quasi-particles. We here consider as an archetypical example for such a system the spin-$frac{1}{2}$ XXX Heisenberg chain that features magnons and their bound states. An interesting question, which we here investigate numerically, arises with respect to the fate of ballistic modes at finite temperatures in the limit of zero magnetization $m{=}0$. At a finite magnetization density $m$, the spin autocorrelation function $Pi(x,t)$ (at high temperatures) typically exhibits a trimodal behavior with left- and right-moving quasi-particle modes and a broad center peak with slower dynamics. The broadening of the fastest propagating modes exhibits a sub-diffusive $t^{1/3}$ scaling at large magnetization densities, $m {rightarrow} frac{1}{2}$, familiar from non-interacting models; it crosses over into a diffusive scaling $t^{1/2}$ upon decreasing the magnetization to smaller values. The behavior of the center peak appears to exhibit a crossover from transient super-diffusion to ballistic relaxation at long times. In the limit $m{to}0$, the weight carried by the propagating peaks tends to zero; the residual dynamics is carried only by the central peak; it is sub-ballistic and characterized by a dynamical exponent $z$ close to the value $frac{3}{2}$ familiar from Kardar-Parisi-Zhang (KPZ) scaling. We confirm, employing elaborate finite-time extrapolations, that the spatial scaling of the correlator $Pi$ is in excellent agreement with KPZ-type behavior and analyze the corresponding corrections.



rate research

Read More

The search for departures from standard hydrodynamics in many-body systems has yielded a number of promising leads, especially in low dimension. Here we study one of the simplest classical interacting lattice models, the nearest-neighbour Heisenberg chain, with temperature as tuning parameter. Our numerics expose strikingly different spin dynamics between the antiferromagnet, where it is largely diffusive, and the ferromagnet, where we observe strong evidence either of spin super-diffusion or an extremely slow crossover to diffusion. This difference also governs the equilibration after a quench, and, remarkably, is apparent even at very high temperatures.
A full energy spectrum, magnetization and susceptibility of a spin-1/2 Heisenberg model on two edge-shared tetrahedra are exactly calculated by assuming two different coupling constants. It is shown that a ground state in zero field is either a singlet or a triplet state depending on a relative strength of both coupling constants. Low-temperature magnetization curves may exhibit three different sequences of intermediate plateaux at the following fractional values of the saturation magnetization: 1/3-2/3-1, 0-1/3-2/3-1 or 0-2/3-1. The inverse susceptibility displays a marked temperature dependence significantly influenced by a character of the zero-field ground state. The obtained theoretical results are confronted with recent high-field magnetization data of the mineral crystal fedotovite K2Cu3(SO4)3.
327 - C.J. Hamer 2009
The energy spectrum of the two-magnon bound states in the Heisenberg-Ising antiferromagnet on the square lattice are calculated using series expansion methods. The results confirm an earlier spin-wave prediction of Oguchi and Ishikawa, that the bound states vanish into the continuum before the isotropic Heisenberg limit is reached.
A full energy spectrum of the spin-1/2 Heisenberg cubic cluster is used to investigate a low-temperature magnetization process and adiabatic demagnetization of this zero-dimensional 2x2x2 quantum spin system. It is shown that the antiferromagnetic spin-1/2 Heisenberg cube exhibits at low enough temperatures a stepwise magnetization curve with four intermediate plateaux at zero, one quarter, one half, and three quarters of the saturation magnetization. We have also found the enhanced magnetocaloric effect close to level-crossing fields that determine transitions between the intermediate plateaux.
In this paper we discuss the norms of the Bethe states for the spin one-half Heisenberg chain in the critical regime. Our analysis is based on the ODE/IQFT correspondence. Together with numerical work, this has lead us to formulate a set of conjectures concerning the scaling behavior of the norms. Also, we clarify the role of the different Hermitian structures associated with the integrable structure studied in the series of works of Bazhanov, Lukyanov and Zamolodchikov in the mid nineties.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا