Do you want to publish a course? Click here

Bethe state norms for the Heisenberg spin chain in the scaling limit

68   0   0.0 ( 0 )
 Added by Gleb Kotousov
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper we discuss the norms of the Bethe states for the spin one-half Heisenberg chain in the critical regime. Our analysis is based on the ODE/IQFT correspondence. Together with numerical work, this has lead us to formulate a set of conjectures concerning the scaling behavior of the norms. Also, we clarify the role of the different Hermitian structures associated with the integrable structure studied in the series of works of Bazhanov, Lukyanov and Zamolodchikov in the mid nineties.



rate research

Read More

In this note we report the results of our study of a 1D integrable spin chain whose critical behaviour is governed by a CFT possessing a continuous spectrum of scaling dimensions. It is argued that the computation of the density of Bethe states of the continuous theory can be reduced to the calculation of the connection coefficients for a certain class of differential equations whose monodromy properties are similar to those of the conventional confluent hypergeometric equation. The finite size corrections to the scaling are also discussed.
191 - Zhongtao Mei , C. J. Bolech 2016
Using the algebraic Bethe ansatz, we derive a matrix product representation of the exact Bethe-ansatz states of the six-vertex Heisenberg chain (either XXX or XXZ and spin-$frac{1}{2}$) with open boundary conditions. In this representation, the components of the Bethe eigenstates are expressed as traces of products of matrices which act on a tensor product of auxiliary spaces. As compared to the matrix product states of the same Heisenberg chain but with periodic boundary conditions, the dimension of the exact auxiliary matrices is enlarged as if the conserved number of spin-flips considered would have been doubled. This result is generic for any non-nested integrable model, as is clear from our derivation and we further show by providing an additional example of the same matrix product state construction for a well known model of a gas of interacting bosons. Counterintuitively, the matrices do not depend on the spatial coordinate despite the open boundaries and thus suggest generic ways of exploiting (emergent) translational invariance both for finite size and in the thermodynamic limit.
The periodic sl(2|1) alternating spin chain encodes (some of) the properties of hulls of percolation clusters, and is described in the continuum limit by a logarithmic conformal field theory (LCFT) at central charge c=0. This theory corresponds to the strong coupling regime of a sigma model on the complex projective superspace $mathbb{CP}^{1|1} = mathrm{U}(2|1) / (mathrm{U}(1) times mathrm{U}(1|1))$, and the spectrum of critical exponents can be obtained exactly. In this paper we push the analysis further, and determine the main representation theoretic (logarithmic) features of this continuum limit by extending to the periodic case the approach of [N. Read and H. Saleur, Nucl. Phys. B 777 316 (2007)]. We first focus on determining the representation theory of the finite size spin chain with respect to the algebra of local energy densities provided by a representation of the affine Temperley-Lieb algebra at fugacity one. We then analyze how these algebraic properties carry over to the continuum limit to deduce the structure of the space of states as a representation over the product of left and right Virasoro algebras. Our main result is the full structure of the vacuum module of the theory, which exhibits Jordan cells of arbitrary rank for the Hamiltonian.
This work concerns the quantum Lorentzian and Euclidean black hole non-linear sigma models. For the Euclidean black hole sigma model an equilibrium density matrix is proposed, which reproduces the modular invariant partition function from the 2001 paper of Maldacena, Ooguri and Son. For the Lorentzian black hole sigma model, using its formulation as a gauged ${rm SL}(2,mathbb{R})$ WZW model, we describe the linear and Hermitian structure of its space of states and also propose an expression for the equilibrium density matrix. Our analysis is guided by the results of the study of a certain critical, integrable spin chain. In the scaling limit, the latter exhibits the key features of the Lorentzian black hole sigma model including the same global symmetries, the same algebra of extended conformal symmetry and a continuous spectrum of conformal dimensions.
522 - Francesco Buccheri 2012
We present an expression for the generating function of correlation functions of the sine-Gordon integrable field theory on a cylinder, with compact space. This is derived from the Destri-De Vega integrable lattice regularization of the theory, formulated as an inhomogeneous Heisenberg XXZ spin chain, and from more recent advances in the computations of spin form factors in the thermodynamic limit.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا