No Arabic abstract
Measurement incompatibility describes two or more quantum measurements whose expected joint outcome on a given system cannot be defined. This purely non-classical phenomenon provides a necessary ingredient in many quantum information tasks such violating a Bell Inequality or nonlocally steering part of an entangled state. In this paper, we characterize incompatibility in terms of programmable measurement devices and the general notion of quantum programmability. This refers to the temporal freedom a user has in issuing programs to a quantum device. For devices with a classical control and classical output, measurement incompatibility emerges as the essential quantum resource embodied in their functioning. Based on the processing of programmable measurement devices, we construct a quantum resource theory of incompatibility. A complete set of convertibility conditions for programmable devices is derived based on quantum state discrimination with post-measurement information.
Just recently, complementarity relations (CRs) have been derived from the basic rules of Quantum Mechanics. The complete CRs are equalities involving quantum coherence, $C$, quantum entanglement, and predictability, $P$. While the first two are already quantified in the resource theory framework, such a characterization lacks for the last. In this article, we start showing that, for a system prepared in a state $rho$, $P$ of $rho$, with reference to an observable $X$, is equal to $C$, with reference to observables mutually unbiased (MU) to $X$, of the state $Phi_{X}(rho)$, which is obtained from a non-revealing von Neumann measurement (NRvNM) of $X$. We also show that $P^X(rho)>C^{Y}(Phi_{X}(rho))$ for observables not MU. Afterwards, we provide quantum circuits for implementing NRvNMs and use these circuits to experimentally test these (in)equalities using the IBMs quantum computers. Furthermore, we give a resource theory for predictability, identifying its free quantum states and free quantum operations and discussing some predictability monotones. Besides, after applying one of these predictability monotones to study bipartite systems, we discuss the relation among the resource theories of quantum coherence, predictability, and purity.
A programmable quantum processor uses the states of a program register to specify one element of a set of quantum channels which is applied to an input register. It is well-known that such a device is impossible with a finite-dimensional program register for any set that contains infinitely many unitary quantum channels (Nielsen and Chuangs No-Programming Theorem), meaning that a universal programmable quantum processor does not exist. The situation changes if the system has symmetries. Indeed, here we consider group-covariant channels. If the group acts irreducibly on the channel input, these channels can be implemented exactly by a programmable quantum processor with finite program dimension (via teleportation simulation, which uses the Choi-Jamiolkowski state of the channel as a program). Moreover, by leveraging the representation theory of the symmetry group action, we show how to remove redundancy in the program and prove that the resulting program register has minimum Hilbert space dimension. Furthermore, we provide upper and lower bounds on the program register dimension of a processor implementing all group-covariant channels approximately.
We investigate the behavior of coherence in scattering quantum walk search on complete graph under the condition that the total number of vertices of the graph is greatly larger than the marked number of vertices we are searching, $N gg v$. We find that the consumption of coherence represents the increase of the success probability for the searching,also the consumption of coherence is related to the efficiency of the algorithm represented by oracle queries.If no coherence is consumed, the efficiency of the algorithm will be the same as the classical blind search, implying that coherence is responsible for the speed up in this quantum algorithm over its classical counterpart. In case the initial state is incoherent, still $N gg v$ is assumed,the probability of success for searching will not change with time, indicating that this quantum search algorithm loses its power.We then conclude that the coherence plays an essential role and is responsible for the speed up in this quantum algorithm.
We develop a resource theory of symmetric distinguishability, the fundamental objects of which are elementary quantum information sources, i.e., sources that emit one of two possible quantum states with given prior probabilities. Such a source can be represented by a classical-quantum state of a composite system $XA$, corresponding to an ensemble of two quantum states, with $X$ being classical and $A$ being quantum. We study the resource theory for two different classes of free operations: $(i)$ ${rm{CPTP}}_A$, which consists of quantum channels acting only on $A$, and $(ii)$ conditional doubly stochastic (CDS) maps acting on $XA$. We introduce the notion of symmetric distinguishability of an elementary source and prove that it is a monotone under both these classes of free operations. We study the tasks of distillation and dilution of symmetric distinguishability, both in the one-shot and asymptotic regimes. We prove that in the asymptotic regime, the optimal rate of converting one elementary source to another is equal to the ratio of their quantum Chernoff divergences, under both these classes of free operations. This imparts a new operational interpretation to the quantum Chernoff divergence. We also obtain interesting operational interpretations of the Thompson metric, in the context of the dilution of symmetric distinguishability.
Incompatibility of quantum measurements is of fundamental importance in quantum mechanics. It is closely related to many nonclassical phenomena such as Bell nonlocality, quantum uncertainty relations, and quantum steering. We study the necessary and sufficient conditions of quantum compatibility for a given collection of $n$ measurements in $d$-dimensional space. From the compatibility criterion for two-qubit measurements, we compute the incompatibility probability of a pair of independent random measurements. For a pair of unbiased random qubit measurements, we derive that the incompatibility probability is exactly $frac35$. Detailed results are also presented in figures for pairs of general qubit measurements.