Do you want to publish a course? Click here

Coherence as resource in scattering quantum walk search on complete graph

77   0   0.0 ( 0 )
 Added by Yunlong Su
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the behavior of coherence in scattering quantum walk search on complete graph under the condition that the total number of vertices of the graph is greatly larger than the marked number of vertices we are searching, $N gg v$. We find that the consumption of coherence represents the increase of the success probability for the searching,also the consumption of coherence is related to the efficiency of the algorithm represented by oracle queries.If no coherence is consumed, the efficiency of the algorithm will be the same as the classical blind search, implying that coherence is responsible for the speed up in this quantum algorithm over its classical counterpart. In case the initial state is incoherent, still $N gg v$ is assumed,the probability of success for searching will not change with time, indicating that this quantum search algorithm loses its power.We then conclude that the coherence plays an essential role and is responsible for the speed up in this quantum algorithm.



rate research

Read More

Measurement incompatibility describes two or more quantum measurements whose expected joint outcome on a given system cannot be defined. This purely non-classical phenomenon provides a necessary ingredient in many quantum information tasks such violating a Bell Inequality or nonlocally steering part of an entangled state. In this paper, we characterize incompatibility in terms of programmable measurement devices and the general notion of quantum programmability. This refers to the temporal freedom a user has in issuing programs to a quantum device. For devices with a classical control and classical output, measurement incompatibility emerges as the essential quantum resource embodied in their functioning. Based on the processing of programmable measurement devices, we construct a quantum resource theory of incompatibility. A complete set of convertibility conditions for programmable devices is derived based on quantum state discrimination with post-measurement information.
We address the scattering of a quantum particle by a one-dimensional barrier potential over a set of discrete positions. We formalize the problem as a continuous-time quantum walk on a lattice with an impurity, and use the quantum Fisher information as a mean to quantify the maximal possible accuracy in the estimation of the height of the barrier. We introduce suitable initial states of the walker and derive the reflection and transmission probabilities of the scattered state. We show that while the quantum Fisher information is affected by the width and central momentum of the initial wave packet, this dependency is weaker for the quantum signal-to-noise ratio. We also show that a dichotomic position measurement provides a nearly optimal detection scheme.
Quantum discord and quantum entanglement are resources in some quantum information processing (QIP) models. However, in recent years, the evidence that separable states or classically correlated states can also accomplish QIP is demonstrated. It provides a useful tool since such states are easier to prepare. Quantum coherence is a measure of non-classical correlation, containing entanglement and discord as a subset. Nowadays, it is of interest whether quantum coherence can act as a resource in QIP independently or not, without the help from quantum discord or entanglement. In this paper, we show that quantum correlated coherence(a measure of coherence with local parts removed) is also a kind of quantum resource. It is the sufficient and necessary resource for quantum remote state preparation and quantum teleportation.
Quantum coherence is a useful resource that is consumed to accomplish several tasks that classical devices are hard to fulfill. Especially, it is considered to be the origin of quantum speedup for many computational algorithms. In this work, we interpret the computational time cost of boson sampling with partially distinguishable photons from the perspective of coherence resource theory. With incoherent operations that preserve the diagonal elements of quantum states up to permutation, which we name emph{permuted genuinely incoherent operation} (pGIO), we present some evidence that the decrease of coherence corresponds to a computationally less complex system of partially distinguishable boson sampling. Our result shows that coherence is one of crucial resources for the computational time cost of boson sampling. We expect our work presents an insight to understand the quantum complexity of the linear optical network system.
A microscopic derivation of an open quantum walk on a two node graph is presented. It is shown that for the considered microscopic model of the system-bath interaction the resulting quantum master equation takes the form of a generalized master equation. The explicit form of the quantum coin operators is derived. The formalism is demonstrated for the example of a two-level system walking on a two-node graph.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا