No Arabic abstract
A programmable quantum processor uses the states of a program register to specify one element of a set of quantum channels which is applied to an input register. It is well-known that such a device is impossible with a finite-dimensional program register for any set that contains infinitely many unitary quantum channels (Nielsen and Chuangs No-Programming Theorem), meaning that a universal programmable quantum processor does not exist. The situation changes if the system has symmetries. Indeed, here we consider group-covariant channels. If the group acts irreducibly on the channel input, these channels can be implemented exactly by a programmable quantum processor with finite program dimension (via teleportation simulation, which uses the Choi-Jamiolkowski state of the channel as a program). Moreover, by leveraging the representation theory of the symmetry group action, we show how to remove redundancy in the program and prove that the resulting program register has minimum Hilbert space dimension. Furthermore, we provide upper and lower bounds on the program register dimension of a processor implementing all group-covariant channels approximately.
Measurement incompatibility describes two or more quantum measurements whose expected joint outcome on a given system cannot be defined. This purely non-classical phenomenon provides a necessary ingredient in many quantum information tasks such violating a Bell Inequality or nonlocally steering part of an entangled state. In this paper, we characterize incompatibility in terms of programmable measurement devices and the general notion of quantum programmability. This refers to the temporal freedom a user has in issuing programs to a quantum device. For devices with a classical control and classical output, measurement incompatibility emerges as the essential quantum resource embodied in their functioning. Based on the processing of programmable measurement devices, we construct a quantum resource theory of incompatibility. A complete set of convertibility conditions for programmable devices is derived based on quantum state discrimination with post-measurement information.
Additivity of minimal entropy output is proven for the class of quantum channels $Lambda_t (A):=t A^{T}+(1-t)tau (A)$ in the parameter range $-2/(d^2-2)le t le 1/(d+1)$.
We investigate the coherence of quantum channels using the Choi-Jamiol{}kowski isomorphism. The relation between the coherence and the purity of the channel respects a duality relation. It characterizes the allowed values of coherence when the channel has certain purity. This duality has been depicted via the Coherence-Purity (Co-Pu) diagrams. In particular, we study the quantum coherence of the unital and non-unital qubit channels and find out the allowed region of coherence for a fixed purity. We also study coherence of different incoherent channels, namely, incoherent operation (IO), strictly incoherent operation (SIO), physical incoherent operation (PIO) etc. Interestingly, we find that the allowed region for different incoherent operations maintain the relation $PIOsubset SIO subset IO$. In fact, we find that if PIOs are coherence preserving operations (CPO), its coherence is zero otherwise it has unit coherence and unit purity. Interestingly, different kinds of qubit channels can be distinguished using the Co-Pu diagram. The unital channels generally do not create coherence whereas some nonunital can. All coherence breaking channels are shown to have zero coherence, whereas, this is not usually true for entanglement breaking channels. It turns out that the coherence preserving qubit channels have unit coherence. Although the coherence of the Choi matrix of the incoherent channels might have finite values, its subsystem contains no coherence. This indicates that the incoherent channels can either be unital or nonunital under some conditions.
We formulate the notion of quantum channels in the framework of quantum tomography and address there the issue of whether such maps can be regarded as classical stochastic maps. In particular kernels of maps acting on probability representation of quantum states are derived for qubit and bosonic systems. In the latter case it results that a single mode Gaussian quantum channel corresponds to non-Gaussian classical channels.
Transmission and storage of quantum information are the fundamental building blocks for large-scale quantum communication networks. Reliable certification of quantum communication channels and quantum memories requires the estimation of their capacities to transmit and store quantum information. This problem is challenging for continuous variable systems, such as the radiation field, for which a complete characterization of processes via quantum tomography is practically unfeasible. Here we develop protocols for detecting lower bounds to the quantum capacity of continuous variable communication channels and memories. Our protocols work in the general scenario where the devices are used a finite number of times, can exhibit correlations across multiple uses, and can be under the control of an adversary. Our protocols are experimentally friendly and can be implemented using Gaussian input states (single-mode squeezed or coherent) and Gaussian quantum measurements (homodyne or heterodyne). These schemes can be used to certify the transmission and storage of continuous variable quantum information, and to detect communication paths in quantum networks.