Do you want to publish a course? Click here

Channel Coding of a Quantum Measurement

63   0   0.0 ( 0 )
 Added by Joonwoo Bae
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this work, we consider the preservation of a measurement for quantum systems interacting with an environment. Namely, a method of preserving an optimal measurement over a channel is devised, what we call channel coding of a quantum measurement in that operations are applied before and after a channel in order to protect a measurement. A protocol that preserves a quantum measurement over an arbitrary channel is shown only with local operations and classical communication without the use of a larger Hilbert space. Therefore, the protocol is readily feasible with present days technologies. Channel coding of qubit measurements is presented, and it is shown that a measurement can be preserved for an arbitrary channel for both i) pairs of qubit states and ii) ensembles of equally probable states. The protocol of preserving a quantum measurement is demonstrated with IBM quantum computers.



rate research

Read More

We introduce and experimentally demonstrate a method for realising a quantum channel using the measurement-based model. Using a photonic setup and modifying the bases of single-qubit measurements on a four-qubit entangled cluster state, representative channels are realised for the case of a single qubit in the form of amplitude and phase damping channels. The experimental results match the theoretical model well, demonstrating the successful performance of the channels. We also show how other types of quantum channels can be realised using our approach. This work highlights the potential of the measurement-based model for realising quantum channels which may serve as building blocks for simulations of realistic open quantum systems.
Quantum network coding has been proposed to improve resource utilization to support distributed computation but has not yet been put in to practice. We investigate a particular implementation of quantum network coding using measurement-based quantum computation on IBM Q processors. We compare the performance of quantum network coding with entanglement swapping and entanglement distribution via linear cluster states. These protocols outperform quantum network coding in terms of the final Bell pair fidelities but are unsuitable for optimal resource utilization in complex networks with contention present. We demonstrate the suitability of noisy intermediate-scale quantum (NISQ) devices such as IBM Q for the study of quantum networks. We also identify the factors that limit the performance of quantum network coding on these processors and provide estimates or error rates required to boost the final Bell pair fidelities to a point where they can be used for generation of genuinely random cryptographic keys among other useful tasks. Surprisingly, the required error rates are only around a factor of 2 smaller than the current status and we expect they will be achieved in the near future.
130 - Gilad Gour , Mark M. Wilde 2018
The von Neumann entropy of a quantum state is a central concept in physics and information theory, having a number of compelling physical interpretations. There is a certain perspective that the most fundamental notion in quantum mechanics is that of a quantum channel, as quantum states, unitary evolutions, measurements, and discarding of quantum systems can each be regarded as certain kinds of quantum channels. Thus, an important goal is to define a consistent and meaningful notion of the entropy of a quantum channel. Motivated by the fact that the entropy of a state $rho$ can be formulated as the difference of the number of physical qubits and the relative entropy distance between $rho$ and the maximally mixed state, here we define the entropy of a channel $mathcal{N}$ as the difference of the number of physical qubits of the channel output with the relative entropy distance between $mathcal{N}$ and the completely depolarizing channel. We prove that this definition satisfies all of the axioms, recently put forward in [Gour, IEEE Trans. Inf. Theory 65, 5880 (2019)], required for a channel entropy function. The task of quantum channel merging, in which the goal is for the receiver to merge his share of the channel with the environments share, gives a compelling operational interpretation of the entropy of a channel. The entropy of a channel can be negative for certain channels, but this negativity has an operational interpretation in terms of the channel merging protocol. We define Renyi and min-entropies of a channel and prove that they satisfy the axioms required for a channel entropy function. Among other results, we also prove that a smoothed version of the min-entropy of a channel satisfies the asymptotic equipartition property.
Quantum network coding is an effective solution for alleviating bottlenecks in quantum networks. We introduce a measurement-based quantum network coding scheme for quantum repeater networks (MQNC), and analyze its behavior based on results acquired from Monte-Carlo simulation that includes various error sources over a butterfly network. By exploiting measurement-based quantum computing, operation on qubits for completing network coding proceeds in parallel. We show that such an approach offers advantages over other schemes in terms of the quantum circuit depth, and therefore improves the communication fidelity without disturbing the aggregate throughput. The circuit depth of our protocol has been reduced by 56.5% compared to the quantum network coding scheme (QNC) introduced in 2012 by Satoh, et al. For MQNC, we have found that the resulting entangled pairs joint fidelity drops below 50% when the accuracy of local operations is lower than 98.9%, assuming that all initial Bell pairs across quantum repeaters have a fixed fidelity of 98%. Overall, MQNC showed substantially higher error tolerance compared to QNC and slightly better than buffer space multiplexing using step-by-step entanglement swapping, but not quite as strong as simultaneous entanglement swapping operations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا