There are different inequivalent ways to define the Renyi capacity of a channel for a fixed input distribution $P$. In a 1995 paper Csiszar has shown that for classical discrete memoryless channels there is a distinguished such quantity that has an operational interpretation as a generalized cutoff rate for constant composition channel coding. We show that the analogous notion of Renyi capacity, defined in terms of the sandwiched quantum Renyi divergences, has the same operational interpretation in the strong converse problem of classical-quantum channel coding. Denoting the constant composition strong converse exponent for a memoryless classical-quantum channel $W$ with composition $P$ and rate $R$ as $sc(W,R,P)$, our main result is that [ sc(W,R,P)=sup_{alpha>1}frac{alpha-1}{alpha}left[R-chi_{alpha}^*(W,P)right], ] where $chi_{alpha}^*(W,P)$ is the $P$-weighted sandwiched Renyi divergence radius of the image of the channel.
We present two general approaches to obtain the strong converse rate of quantum hypothesis testing for correlated quantum states. One approach requires that the states satisfy a certain factorization property; typical examples of such states are the temperature states of translation-invariant finite-range interactions on a spin chain. The other approach requires the differentiability of a regularized Renyi $alpha$-divergence in the parameter $alpha$; typical examples of such states include temperature states of non-interacting fermionic lattice systems, and classical irreducible Markov chains. In all cases, we get that the strong converse exponent is equal to the Hoeffding anti-divergence, which in turn is obtained from the regularized Renyi divergences of the two states.
Designing encoding and decoding circuits to reliably send messages over many uses of a noisy channel is a central problem in communication theory. When studying the optimal transmission rates achievable with asymptotically vanishing error it is usually assumed that these circuits can be implemented using noise-free gates. While this assumption is satisfied for classical machines in many scenarios, it is not expected to be satisfied in the near term future for quantum machines where decoherence leads to faults in the quantum gates. As a result, fundamental questions regarding the practical relevance of quantum channel coding remain open. By combining techniques from fault-tolerant quantum computation with techniques from quantum communication, we initiate the study of these questions. We introduce fault-tolera
The security of quantum key distribution has traditionally been analyzed in either the asymptotic or non-asymptotic regimes. In this paper, we provide a bridge between these two regimes, by determining second-order coding rates for key distillation in quantum key distribution under collective attacks. Our main result is a formula that characterizes the backoff from the known asymptotic formula for key distillation -- our formula incorporates the reliability and security of the protocol, as well as the mutual information variances to the legitimate receiver and the eavesdropper. In order to determine secure key rates against collective attacks, one should perform a joint optimization of the Holevo information and the Holevo information variance to the eavesdropper. We show how to do so by analyzing several examples, including the six-state, BB84, and continuous-variable quantum key distribution protocols (the last involving Gaussian modulation of coherent states along with heterodyne detection). The technical contributions of this paper include one-shot and second-order analyses of private communication over a compound quantum wiretap channel with fixed marginal and key distillation over a compound quantum wiretap source with fixed marginal. We also establish the second-order asymptotics of the smooth max-relative entropy of quantum states acting on a separable Hilbert space, and we derive a formula for the Holevo information variance of a Gaussian ensemble of Gaussian states.
We prove that the classical capacity of an arbitrary quantum channel assisted by a free classical feedback channel is bounded from above by the maximum average output entropy of the quantum channel. As a consequence of this bound, we conclude that a classical feedback channel does not improve the classical capacity of a quantum erasure channel, and by taking into account energy constraints, we conclude the same for a pure-loss bosonic channel. The method for establishing the aforementioned entropy bound involves identifying an information measure having two key properties: 1) it does not increase under a one-way local operations and classical communication channel from the receiver to the sender and 2) a quantum channel from sender to receiver cannot increase the information measure by more than the maximum output entropy of the channel. This information measure can be understood as the sum of two terms, with one corresponding to classical correlation and the other to entanglement.