Do you want to publish a course? Click here

Maxwells lesser demon: a quantum engine driven by pointer measurements

87   0   0.0 ( 0 )
 Added by Stefan Nimmrichter
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We discuss a self-contained spin-boson model for a measurement-driven engine, in which a demon generates work from thermal excitations of a quantum spin via measurement and feedback control. Instead of granting it full direct access to the spin state and to Landauers erasure strokes for optimal performance, we restrict this demons action to pointer measurements, i.e. random or continuous interrogations of a damped mechanical oscillator that assumes macroscopically distinct positions depending on the spin state. The engine can reach simultaneously the power and efficiency benchmarks and operate in temperature regimes where quantum Otto engines would fail.



rate research

Read More

142 - H. Dong , D.Z. Xu , C.P. Sun 2010
We study the physical mechanism of Maxwells Demon (MD) helping to do extra work in thermodynamic cycles, by describing measurement of position, insertion of wall and information erasing of MD in a quantum mechanical fashion. The heat engine is exemplified with one molecule confined in an infinitely deep square potential inserted with a movable solid wall, while the MD is modeled as a two-level system (TLS) for measuring and controlling the motion of the molecule. It is discovered that the the MD with quantum coherence or on a lower temperature than that of the heat bath of the particle would enhance the ability of the whole work substance formed by the system plus the MD to do work outside. This observation reveals that the role of the MD essentially is to drive the whole work substance being off equilibrium, or equivalently working with an effective temperature difference. The elaborate studies with this model explicitly reveal the effect of finite size off the classical limit or thermodynamic limit, which contradicts the common sense on Szilard heat engine (SHE). The quantum SHEs efficiency is evaluated in detail to prove the validity of second law of thermodynamics.
Maxwells demon explores the role of information in physical processes. Employing information about microscopic degrees of freedom, this intelligent observer is capable of compensating entropy production (or extracting work), apparently challenging the second law of thermodynamics. In a modern standpoint, it is regarded as a feedback control mechanism and the limits of thermodynamics are recast incorporating information-to-energy conversion. We derive a trade-off relation between information-theoretic quantities empowering the design of an efficient Maxwells demon in a quantum system. The demon is experimentally implemented as a spin-1/2 quantum memory that acquires information, and employs it to control the dynamics of another spin-1/2 system, through a natural interaction. Noise and imperfections in this protocol are investigated by the assessment of its effectiveness. This realization provides experimental evidence that the irreversibility on a non-equilibrium dynamics can be mitigated by assessing microscopic information and applying a feed-forward strategy at the quantum scale.
The first direct experimental replication of the Maxwell Demon thought experiment is outlined. The experiment determines the velocity/kinetic energy distribution of the particles in a sample by a novel interpretation of the results from a standard time-of-flight (TOF) small angle neutron scattering (SANS) procedure. Perspex at 293 K was subjected to neutrons at 82.2 K. The key result is a TOF velocity distribution curve that is a direct spatial and time-dependent microscopic probe of the velocity distribution of the Perspex nuclei at 293 K. Having this curve, one can duplicate the Demons approach by selecting neutrons at known kinetic energies. One example is given: namely, two reservoirs -- hot and cold reservoirs -- were generated from the 293 K source without disturbing its original 293 K energy distribution.
The gedanken experiment of Maxwells demon has led to the studies concerning the foundations of thermodynamics and statistical mechanics. The demon measures fluctuations of a systems observable and converts the information gain into work via feedback control. Recent developments have elucidated the relationship between the acquired information and the entropy production and generalized the second law of thermodynamics and the fluctuation theorems. Here we extend the scope to a system subject to quantum fluctuations by exploiting techniques in superconducting circuit quantum electrodynamics. We implement Maxwells demon equipped with coherent control and quantum nondemolition projective measurements on a superconducting qubit, where we verify the generalized integral fluctuation theorems and demonstrate the information-to-work conversion. This reveals the potential of superconducting circuits as a versatile platform for investigating quantum information thermodynamics under feedback control, which is closely linked to quantum error correction for computation and metrology.
We show that Maxwells demon-like nonreciprocity can be supported in a class of non-Hermitian gyrotropic metasurfaces in the linear regime. The proposed metasurface functions as a transmission-only Maxwells demon operating at a pair of photon energies. Based on multiple scattering theory, we construct a dual-dipole model to explain the underlying mechanism that leads to the antisymmetric nonreciprocal transmission. The results may inspire new designs of compact nonreciprocal devices for photonics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا