Do you want to publish a course? Click here

Analysis of SLA Compliance in the Cloud -- An Automated, Model-based Approach

124   0   0.0 ( 0 )
 Added by EPTCS
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Service Level Agreements (SLA) are commonly used to specify the quality attributes between cloud service providers and the customers. A violation of SLAs can result in high penalties. To allow the analysis of SLA compliance before the services are deployed, we describe in this paper an approach for SLA-aware deployment of services on the cloud, and illustrate its workflow by means of a case study. The approach is based on formal models combined with static analysis tools and generated runtime monitors. As such, it fits well within a methodology combining software development with information technology operations (DevOps).



rate research

Read More

Within cloud-based internet of things (IoT) applications, typically cloud providers employ Service Level Agreements (SLAs) to ensure the quality of their provisioned services. Similar to any other contractual method, an SLA is not immune to breaches. Ideally, an SLA stipulates consequences (e.g. penalties) imposed on cloud providers when they fail to conform to SLA terms. The current practice assumes trust in service providers to acknowledge SLA breach incidents and executing associated consequences. Recently, the Blockchain paradigm has introduced compelling capabilities that may enable us to address SLA enforcement more elegantly. This paper proposes and implements a blockchain-based approach for assessing SLA compliance and enforcing consequences. It employs a diagnostic accuracy method for validating the dependability of the proposed solution. The paper also benchmarks Hyperledger Fabric to investigate its feasibility as an underlying blockchain infrastructure concerning latency and transaction success/fail rates.
The concurrency features of the Go language have proven versatile in the development of a number of concurrency systems. However, correctness methods to address challenges in Go concurrency debugging have not received much attention. In this work, we present an automatic dynamic tracing mechanism that efficiently captures and helps analyze the whole-program concurrency model. Using an enhancement to the built-in tracer package of Go and a framework that collects dynamic traces from application execution, we enable thorough post-mortem analysis for concurrency debugging. Preliminary results about the effectiveness and scalability (up to more than 2K goroutines) of our proposed dynamic tracing for concurrent debugging are presented. We discuss the future direction for exploiting dynamic tracing towards accelerating concurrent bug exposure.
A fundamental goal in the design of IaaS service is to enable both user-friendly and cost-effective service access, while attaining high resource efficiency for revenue maximization. QoS differentiation is an important lens to achieve this design goal. In this paper, we propose the first analytical QoS-differentiated resource management and pricing architecture in the cloud computing context; here, a cloud service provider (CSP) offers a portfolio of SLAs. In order to maximize the CSPs revenue, we address two technical questions: (1) how to set the SLA prices so as to direct users to the SLAs best fitting their needs, and, (2) determining how many servers should be assigned to each SLA, and which users and how many of their jobs are admitted to be served. We propose optimal schemes to jointly determine SLA-based prices and perform capacity planning in polynomial time. Our pricing model retains high usability at the customers end. Compared with standard usage-based pricing schemes, numerical results show that the proposed scheme can improve the revenue by up to a five-fold increase.
A Hybrid cloud is an integration of resources between private and public clouds. It enables users to horizontally scale their on-premises infrastructure up to public clouds in order to improve performance and cut up-front investment cost. This model of applications deployment is called cloud bursting that allows data-intensive applications especially distributed database systems to have the benefit of both private and public clouds. In this work, we present an automated implementation of a hybrid cloud using (i) a robust and zero-cost Linux-based VPN to make a secure connection between private and public clouds, and (ii) Terraform as a software tool to deploy infrastructure resources based on the requirements of hybrid cloud. We also explore performance evaluation of cloud bursting for six modern and distributed database systems on the hybrid cloud spanning over local OpenStack and Microsoft Azure. Our results reveal that MongoDB and MySQL Cluster work efficient in terms of throughput and operations latency if they burst into a public cloud to supply their resources. In contrast, the performance of Cassandra, Riak, Redis, and Couchdb reduces if they significantly leverage their required resources via cloud bursting.
Businesses, particularly small and medium-sized enterprises, aiming to start up in Model-Based Design (MBD) face difficult choices from a wide range of methods, notations and tools before making the significant investments in planning, procurement and training necessary to deploy new approaches successfully. In the development of Cyber-Physical Systems (CPSs) this is exacerbated by the diversity of formalisms covering computation, physical and human processes. In this paper, we propose the use of a cloud-enabled and open collaboration platform that allows businesses to offer models, tools and other assets, and permits others to access these on a pay-per-use basis as a means of lowering barriers to the adoption of MBD technology, and to promote experimentation in a sandbox environment.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا