Do you want to publish a course? Click here

Primary frequency regulation in power grids with on-off loads: chattering, limit cycles and convergence to optimality

159   0   0.0 ( 0 )
 Added by Andreas Kasis
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

Load side participation can provide valuable support to the power network in case of urgencies. On many occasions, loads are naturally represented by on and off states. However, the use of on-off loads for frequency control can lead to chattering and undesirable limit cycle behavior, which are issues that need to be resolved for such loads to be used for network support. This paper considers the problem of primary frequency regulation with ancillary service from on-off loads in power networks and establishes conditions that lead to convergence guarantees and an appropriate power allocation within the network. In particular, in order to assist existing frequency control mechanisms, we consider loads that switch when prescribed frequency thresholds are exceeded. Such control policies are prone to chattering, which limits their practicality. To resolve this issue, we consider loads that follow a decentralized hysteretic on-off policy, and show that chattering is not observed within such a setting. Hysteretic loads may exhibit, however, limit cycle behavior, which is undesirable. To address this, we propose an adapted hysteretic control scheme for which we provide convergence guarantees. Furthermore, we consider a mixed-integer optimization problem for power allocation and propose a suitable design of the control policy such that the cost incurred at equilibrium is within $epsilon$ from the optimal cost, providing a non conservative value for $epsilon$. The practicality of our analytic results is demonstrated with numerical simulations on the Northeast Power Coordinating Council (NPCC) 140-bus system.



rate research

Read More

Thermostatically controlled loads (TCLs) can provide ancillary services to the power network by aiding existing frequency control mechanisms. TCLs are, however, characterized by an intrinsic limit cycle behavior which raises the risk that these could synchronize when coupled with the frequency dynamics of the power grid, i.e. simultaneously switch, inducing persistent and possibly catastrophic power oscillations. To address this problem, schemes with a randomized response time in their control policy have been proposed in the literature. However, such schemes introduce delays in the response of TCLs to frequency feedback that may limit their ability to provide fast support at urgencies. In this paper, we present a deterministic control mechanism for TCLs such that those switch when prescribed frequency thresholds are exceeded in order to provide ancillary services to the power network. For the considered scheme, we provide analytic conditions which ensure that synchronization is avoided. In particular, we show that as the number of loads tends to infinity, there exist arbitrarily long time intervals where the frequency deviations are arbitrarily small. Our analytical results are verified with simulations on the Northeast Power Coordinating Council (NPCC) 140-bus system, which demonstrate that the proposed scheme offers improved frequency response compared to conventional implementations.
Hybrid AC/DC networks are a key technology for future electrical power systems, due to the increasing number of converter-based loads and distributed energy resources. In this paper, we consider the design of control schemes for hybrid AC/DC networks, focusing especially on the control of the interlinking converters (ILC(s)). We present two control schemes: firstly for decentralized primary control, and secondly, a distributed secondary controller. In the primary case, the stability of the controlled system is proven in a general hybrid AC/DC network which may include asynchronous AC subsystems. Furthermore, it is demonstrated that power-sharing across the AC/DC network is significantly improved compared to previously proposed dual droop control. The proposed scheme for secondary control guarantees the convergence of the AC system frequencies and the average DC voltage of each DC subsystem to their nominal values respectively. An optimal power allocation is also achieved at steady-state. The applicability and effectiveness of the proposed algorithms are verified by simulation on a test hybrid AC/DC network in MATLAB / Simscape Power Systems.
In this technical note we analyse the performance improvement and optimality properties of the Learning Model Predictive Control (LMPC) strategy for linear deterministic systems. The LMPC framework is a policy iteration scheme where closed-loop trajectories are used to update the control policy for the next execution of the control task. We show that, when a Linear Independence Constraint Qualification (LICQ) condition holds, the LMPC scheme guarantees strict iterative performance improvement and optimality, meaning that the closed-loop cost evaluated over the entire task converges asymptotically to the optimal cost of the infinite-horizon control problem. Compared to previous works this sufficient LICQ condition can be easily checked, it holds for a larger class of systems and it can be used to adaptively select the prediction horizon of the controller, as demonstrated by a numerical example.
This paper considers a distributed PI-controller for networked dynamical systems. Sufficient conditions for when the controller is able to stabilize a general linear system and eliminate static control errors are presented. The proposed controller is applied to frequency control of power transmission systems. Sufficient stability criteria are derived, and it is shown that the controller parameters can always be chosen so that the frequencies in the closed loop converge to nominal operational frequency. We show that the load sharing property of the generators is maintained, i.e., the input power of the generators is proportional to a controller parameter. The controller is evaluated by simulation on the IEEE 30 bus test network, where its effectiveness is demonstrated.
Flexible loads, e.g. thermostatically controlled loads (TCLs), are technically feasible to participate in demand response (DR) programs. On the other hand, there is a number of challenges that need to be resolved before it can be implemented in practice en masse. First, individual TCLs must be aggregated and operated in sync to scale DR benefits. Second, the uncertainty of TCLs needs to be accounted for. Third, exercising the flexibility of TCLs needs to be coordinated with distribution system operations to avoid unnecessary power losses and compliance with power flow and voltage limits. This paper addresses these challenges. We propose a network-constrained, open-loop, stochastic optimal control formulation. The first part of this formulation represents ensembles of collocated TCLs modelled by an aggregated Markov Process (MP), where each MP state is associated with a given power consumption or production level. The second part extends MPs to a multi-period distribution power flow optimization. In this optimization, the control of TCL ensembles is regulated by transition probability matrices and physically enabled by local active and reactive power controls at TCL locations. The optimization is solved with a Spatio-Temporal Dual Decomposition (ST-D2) algorithm. The performance of the proposed formulation and algorithm is demonstrated on the IEEE 33-bus distribution model.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا