Do you want to publish a course? Click here

Interconversion of multiferroic domains and domain walls

85   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Materials with long-range order like ferromagnetism or ferroelectricity exhibit uniform, yet differently oriented three-dimensional regions called domains that are separated by two-dimensional topological defects termed domain wallscite{Tagantsev2010,AlexHubert1998}. A change of the ordered state across a domain wall can lead to local non-bulk properties such as enhanced conductance or the promotion of unusual phasescite{Seidel2009,Meier2012,Farokhipoor2014}. Although highly desirable, controlled transfer of these exciting properties between the bulk and the walls is usually not possible. Here we demonstrate this crossover from three- to two-dimensions for confining multiferroic Dy$_{0.7}$Tb$_{0.3}$FeO$_3$ domains into multiferroic domain walls at a specified location within a non-multiferroic environment. This process is fully reversible; an applied magnetic or electric field controls the transformation. Aside from the aspect of magnetoelectric functionality, such interconversion can be key to tailoring elusive domain architectures such as in antiferromagnets.



rate research

Read More

124 - Xiaoyu Wu , Kai Du , Lu Zheng 2018
We report the nanoscale electrical imaging results in hexagonal $Lu_{0.6}Sc_{0.4}FeO_3$ single crystals using conductive atomic force microscopy (C-AFM) and scanning microwave impedance microscopy (MIM). While the dc and ac response of the ferroelectric domains can be explained by the surface band bending, the drastic enhancement of domain wall (DW) ac conductivity is clearly dominated by the dielectric loss due to DW vibration rather than mobile-carrier conduction. Our work provides a unified physical picture to describe the local conductivity of ferroelectric domains and domain walls, which will be important for future incorporation of electrical conduction, structural dynamics, and multiferroicity into high-frequency nano-devices.
228 - V. Skumryev , V. Laukhin , I. Fina 2010
We demonstrate that the magnetization of a ferromagnet in contact with an antiferromagnetic multiferroic (LuMnO3) can be speedily reversed by electric field pulsing, and the sign of the magnetic exchange bias can switch and recover isothermally. As LuMnO3 is not ferroelastic, our data conclusively show that this switching is not mediated by strain effects but is a unique electric-field driven decoupling of the ferroelectric and ferromagnetic domains walls. Their distinct dynamics are essential for the observed magnetic switching.
In elastically coupled multiferroic heterostructures that exhibit full domain correlations between ferroelectric and ferromagnetic sub-systems, magnetic domain walls are firmly pinned on top of ferroelectric domain boundaries. In this work we investigate the influence of pinned magnetic domain walls on the magnetization reversal process in a Co40Fe40B20 wedge film that is coupled to a ferroelectric BaTiO3 substrate via interface strain transfer. We show that the magnetic field direction can be used to select between two distinct magnetization reversal mechanisms, namely (1) double switching events involving alternate stripe domains at a time or (2) synchronized switching of all domains. Furthermore, scaling of the switching fields with domain width and film thickness is also found to depend on field orientation. These results are explained by considering the dissimilar energies of the two types of pinned magnetic domain walls that are formed in the system.
157 - D. Meier 2009
An investigation of the spatially resolved distribution of domains in the multiferroic phase of MnWO$_4$ reveals that characteristic features of magnetic and ferroelectric domains are inseparably entangled. Consequently, the concept of multiferroic hybrid domains is introduced for compounds in which ferroelectricity is induced by magnetic order. The three-dimensional structure of the domains is resolved. Annealing cycles reveal a topological memory effect that goes beyond previously reported memory effects and allows one to reconstruct the entire multiferroic multidomain structure subsequent to quenching it.
Magnetotransport measurements on small single crystals of Cr, the elemental antiferromagnet, reveal the hysteretic thermodynamics of the domain structure. The temperature dependence of the transport coefficients is directly correlated with the real-space evolution of the domain configuration as recorded by x-ray microprobe imaging, revealing the effect of antiferromagnetic domain walls on electron transport. A single antiferromagnetic domain wall interface resistance is deduced to be of order $5times10^{-5}mathrm{muOmegacdot cm^{2}}$ at a temperature of 100 K.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا