Do you want to publish a course? Click here

Hyperbolic geometry and moduli of real cubic surfaces

145   0   0.0 ( 0 )
 Added by Daniel Allcock
 Publication date 2009
  fields
and research's language is English




Ask ChatGPT about the research

Let M_0^R be the moduli space of smooth real cubic surfaces. We show that each of its components admits a real hyperbolic structure. More precisely, one can remove some lower-dimensional geodesic subspaces from a real hyperbolic space H^4 and form the quotient by an arithmetic group to obtain an orbifold isomorphic to a component of the moduli space. There are five components. For each we describe the corresponding lattices in PO(4,1). We also derive several new and several old results on the topology of M_0^R. Let M_s^R be the moduli space of real cubic surfaces that are stable in the sense of geometric invariant theory. We show that this space carries a hyperbolic structure whose restriction to M_0^R is that just mentioned. The corresponding lattice in PO(4,1), for which we find an explicit fundamental domain, is nonarithmetic.



rate research

Read More

62 - Junho Peter Whang 2016
We show that every coarse moduli space, parametrizing complex special linear rank two local systems with fixed boundary traces on a surface with nonempty boundary, is log Calabi-Yau in that it has a normal projective compactification with trivial log canonical divisor. We connect this to a novel symmetry of generating series for counts of essential multicurves on the surface.
We study holomorphic $(n+1)$-chains $E_nto E_{n-1} to >... to E_0$ consisting of holomorphic vector bundles over a compact Riemann surface and homomorphisms between them. A notion of stability depending on $n$ real parameters was introduced in the work of the first two authors and moduli spaces were constructed by the third one. In this paper we study the variation of the moduli spaces with respect to the stability parameters. In particular we characterize a parameter region where the moduli spaces are birationally equivalent. A detailed study is given for the case of 3-chains, generalizing that of 2-chains (triples) in the work of Bradlow, Garcia-Prada and Gothen. Our work is motivated by the study of the topology of moduli spaces of Higgs bundles and their relation to representations of the fundamental group of the surface.
We define a class of surfaces corresponding to the ADE root lattices and construct compactifications of their moduli spaces as quotients of projective varieties for Coxeter fans, generalizing Losev-Manin spaces of curves. We exhibit modular families over these moduli spaces, which extend to families of stable pairs over the compactifications. One simple application is a geometric compactification of the moduli of rational elliptic surfaces that is a finite quotient of a projective toric variety.
We explore the connection between the rank of a polynomial and the singularities of its vanishing locus. We first describe the singularity of generic polynomials of fixed rank. We then focus on cubic surfaces. Cubic surfaces with isolated singularities are known to fall into 22 singularity types. We compute the rank of a cubic surface of each singularity type. This enables us to find the possible singular loci of a cubic surface of fixed rank. Finally, we study connections to the Hessian discriminant. We show that a cubic surface with singularities that are not ordinary double points lies on the Hessian discriminant, and that the Hessian discriminant is the closure of the rank six cubic surfaces.
Let $F$ be a moduli space of lattice-polarized K3 surfaces. Suppose that one has chosen a canonical effective ample divisor $R$ on a general K3 in $F$. We call this divisor recognizable if its flat limit on Kulikov surfaces is well defined. We prove that the normalization of the stable pair compactification $overline{F}^R$ for a recognizable divisor is a Looijenga semitoroidal compactification. For polarized K3 surfaces $(X,L)$ of degree $2d$, we show that the sum of rational curves in the linear system $|L|$ is a recognizable divisor, giving a modular semitoroidal compactification of $F_{2d}$ for all $d$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا