Do you want to publish a course? Click here

IRC+10216 mass loss properties through the study of $lambda$3mm emission: Large spatial scale distribution of SiO, SiS, and CS

117   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The study of the gas in the envelopes surrounding asymptotic giant branch (AGB) stars through observations in the millimetre wavelength range provides information about the history and nature of these molecular factories. Here we present ALMA observations at subarsecond resolution, complemented with IRAM-30m data, of several lines of SiO, SiS, and CS towards the best-studied AGB circumstellar envelope, IRC+10216. We aim to characterise their spatial distribution and determine their fractional abundances mainly through radiative transfer and chemical modelling. The three species display extended emission with several enhanced emission shells. CS displays the most extended distribution reaching distances up to approximately 20. SiS and SiO emission have similar sizes of approximately 11, but SiS emission is slightly more compact. We have estimated fractional abundances relative to H$_2$, which on average are equal to f(SiO)$sim$10$^{-7}$, f(SiS)$sim$10$^{-6}$, and f(CS)$sim$10$^{-6}$ up to the photo-dissociation region. The observations and analysis presented here show evidence that the circumstellar material displays clear deviations from an homogeneous spherical wind, with clumps and low density shells that may allow UV photons from the interstellar medium (ISM) to penetrate deep into the envelope, shifting the photo-dissociation radius inwards. Our chemical model predicts photo-dissociation radii compatible with those derived from the observations, although it is unable to predict abundance variations from the starting radius of the calculations ($sim$10$R_{*}$), which may reflect the simplicity of the model. We conclude that the spatial distribution of the gas proves the episodic and variable nature of the mass loss mechanism of IRC+10216, on timescales of hundreds of years.



rate research

Read More

100 - Y. Gong , C. Henkel , J. Ott 2017
We present new Effelsberg-100 m, ATCA, and VLA observations of rotational SiS transitions in the circumstellar envelope (CSE) of IRC +10216. Thanks to the high angular resolution achieved by the ATCA observations, we unambiguously confirm that the molecules J=1-0 transition exhibits maser action in this CSE, as first suggested more than thirty years ago. The maser emissions radial velocity peaking at a local standard of rest velocity of -39.862$pm$0.065 km/s indicates that it arises from an almost fully accelerated shell. Monitoring observations show time variability of the SiS (1-0) maser. The two lowest-$J$ SiS quasi-thermal emission lines trace a much more extended emitting region than previous high-J SiS observations. Their distributions show that the SiS quasi-thermal emission consists of two components: one is very compact (radius<1.5, corresponding to <3$times 10^{15}$ cm), and the other extends out to a radius >11. An incomplete shell-like structure is found in the north-east, which is indicative of existing SiS shells. Clumpy structures are also revealed in this CSE. The gain of the SiS (1-0) maser (optical depths of about -5 at the blue-shifted side and, assuming inversion throughout the entire lines velocity range, about -2 at the red-shifted side) suggests that it is unsaturated. The SiS (1-0) maser can be explained in terms of ro-vibrational excitation caused by infrared pumping, and we propose that infrared continuum emission is the main pumping source.
A single dish monitoring of millimeter maser lines SiS J=14-13 and HCN nu_2 = 1^f J=3-2 and several other rotational lines is reported for the archetypal carbon star IRC+10216. Relative line strength variations of 5%~30% are found for eight molecular line features with respect to selected reference lines. Definite line-shape variation is found in limited velocity intervals of the SiS and HCN line profiles. The asymmetrical line profiles of the two lines are mainly due to the varying components. Their dominant varying components of the line profiles have similar periods and phases as the IR light variation, although both quantities show some degree of velocity dependence; there is also variability asymmetry between the blue and red line wings of both lines. Combining the velocities and amplitudes with a wind velocity model, we suggest that the line profile variations are due to SiS and HCN masing lines emanating from the wind acceleration zone. The possible link of the variabilities to thermal, dynamical and/or chemical processes within or under this region is also discussed.
We present the detection of C4H2 for first time in the envelope of the C-rich AGB star IRC+10216 based on high spectral resolution mid-IR observations carried out with the Texas Echelon-cross-Echelle Spectrograph (TEXES) mounted on the Infrared Telescope Facility (IRTF). The obtained spectrum contains 24 narrow absorption features above the detection limit identified as lines of the ro-vibrational C4H2 band nu6+nu8(sigma_u^+). The analysis of these lines through a ro-vibrational diagram indicates that the column density of C4H2 is 2.4(1.5)E+16 cm^(-2). Diacetylene is distributed in two excitation populations accounting for 20 and 80% of the total column density and with rotational temperatures of 47(7) and 420(120) K, respectively. This two-folded rotational temperature suggests that the absorbing gas is located beyond ~0.4~20R* from the star with a noticeable cold contribution outwards from ~10~500R*. This outer shell matches up with the place where cyanoacetylenes and carbon chains are known to form due to the action of the Galactic dissociating radiation field on the neutral gas coming from the inner layers of the envelope.
New high-resolution far-infrared (FIR) observations of both ortho- and para-NH3 transitions toward IRC+10216 were obtained with Herschel, with the goal of determining the ammonia abundance and constraining the distribution of NH3 in the envelope of IRC+10216. We used the Heterodyne Instrument for the Far Infrared (HIFI) on board Herschel to observe all rotational transitions up to the J=3 level (three ortho- and six para-NH3 lines). We conducted non-LTE multilevel radiative transfer modelling, including the effects of near-infrared (NIR) radiative pumping through vibrational transitions. We found that NIR pumping is of key importance for understanding the excitation of rotational levels of NH3. The derived NH3 abundances relative to molecular hydrogen were (2.8+-0.5)x10^{-8} for ortho-NH3 and (3.2^{+0.7}_{-0.6})x10^{-8} for para-NH3, consistent with an ortho/para ratio of 1. These values are in a rough agreement with abundances derived from the inversion transitions, as well as with the total abundance of NH3 inferred from the MIR absorption lines. To explain the observed rotational transitions, ammonia must be formed near to the central star at a radius close to the end of the wind acceleration region, but no larger than about 20 stellar radii (1 sigma confidence level).
Linear carbon chains are common in various types of astronomical molecular sources. Possible formation mechanisms involve both bottom-up and top-down routes. We have carried out a combined observational and modeling study of the formation of carbon chains in the C-star envelope IRC+10216, where the polymerization of acetylene and hydrogen cyanide induced by ultraviolet photons can drive the formation of linear carbon chains of increasing length. We have used ALMA to map the emission of 3 mm rotational lines of the hydrocarbon radicals C2H, C4H, and C6H, and the CN-containing species CN, C3N, HC3N, and HC5N with an angular resolution of 1. The spatial distribution of all these species is a hollow, 5-10 wide, spherical shell located at a radius of 10-20 from the star, with no appreciable emission close to the star. Our observations resolve the broad shell of carbon chains into thinner sub-shells which are 1-2 wide and not fully concentric, indicating that the mass loss process has been discontinuous and not fully isotropic. The radial distributions of the species mapped reveal subtle differences: while the hydrocarbon radicals have very similar radial distributions, the CN-containing species show more diverse distributions, with HC3N appearing earlier in the expansion and the radical CN extending later than the rest of the species. The observed morphology can be rationalized by a chemical model in which the growth of polyynes is mainly produced by rapid gas-phase chemical reactions of C2H and C4H radicals with unsaturated hydrocarbons, while cyanopolyynes are mainly formed from polyynes in gas-phase reactions with CN and C3N radicals.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا