Do you want to publish a course? Click here

Two-zone emission modeling of PKS 1510-089 during the high state of 2015

150   0   0.0 ( 0 )
 Added by Raj Prince
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

PKS 1510-089 is one of the most variable blazars in the third Fermi-LAT source catalog. During 2015, this source has shown four flares identified as flare A, B, C, and D in between three quiescent states Q1, Q2, and Q3. The multi-wavelength data from Fermi-LAT, Swift-XRT/UVOT, OVRO, and SMA observatory are used in our work to model these states. Different flux doubling times have been observed in different energy bands which indicate there could be multiple emission zones. The flux doubling time from the gamma-ray and X-ray light curves are found to be 10.6 hr, 2.5 days, and the average flux doubling time in the optical/UV band is 1 day. It is possible that the gamma-ray and optical/UV emission are produced in the same region whereas X-ray emission is coming from a different region along the jet axis. We have also estimated the discrete correlations functions (DCFs) among the light curves of different energy bands to infer about their emission regions. However, our DCF analysis does not show significant correlation in different energy bands though it shows peaks in some cases at small time lags. We perform a two-zone multi-wavelength time-dependent SED modeling with one emission zone located near the outer edge of the broad line region (BLR) and another further away in the dusty/molecular torus (DT/MT) region to study this high state.



rate research

Read More

PKS 1510--089 is a bright and active $gamma$-ray source that showed strong and complex $gamma$-ray flares in mid-2015 during which the Major Atmospheric Gamma Imaging Cherenkov telescopes detected variable very high energy (VHE; photon energies $>$100 GeV) emission. We present long-term multi-frequency radio, optical, and $gamma$-ray light curves of PKS 1510--089 from 2013 to 2018, and results of an analysis of the jet kinematics and linear polarization using 43 GHz Very Long Baseline Array data observed between late 2015 and mid-2017. We find that a strong radio flare trails the $gamma$-ray flares in 2015, showing an optically thick spectrum at the beginning and becoming optically thin over time. Two laterally separated knots of emission are observed to emerge from the radio core nearly simultaneously during the $gamma$-ray flares. We detect an edge-brightened linear polarization near the core in the active jet state in 2016, similar to the quiescent jet state in 2008--2013. These observations indicate that the $gamma$-ray flares may originate from compression of the knots by a standing shock in the core and the jet might consist of multiple complex layers showing time-dependent behavior, rather than of a simple structure of a fast jet spine and a slow jet sheath.
Context. PKS 1510-089 is one of only a few flat spectrum radio quasars detected in the VHE (very-high-energy, > 100 GeV) gamma-ray band. Aims. We study the broadband spectral and temporal properties of the PKS 1510-089 emission during a high gamma-ray state. Methods. We performed VHE gamma-ray observations of PKS 1510-089 with the MAGIC telescopes during a long high gamma-ray state in May 2015. In order to perform broadband modelling of the source, we have also gathered contemporaneous multiwavelength data in radio, IR, optical photometry and polarization, UV, X-ray and GeV gamma-ray ranges. We construct a broadband spectral energy distribution (SED) in two periods, selected according to VHE gamma-ray state. Results. PKS 1510-089 has been detected by MAGIC during a few day-long observations performed in the middle of a long, high optical and gamma-ray state, showing for the first time a significant VHE gamma-ray variability. Similarly to the optical and gamma-ray high state of the source detected in 2012, it was accompanied by a rotation of the optical polarization angle and the emission of a new jet component observed in radio. However, due to large uncertainty on the knot separation time, the association with the VHE gamma-ray emission cannot be firmly established. The spectral shape in the VHE band during the flare is similar to the ones obtained during previous measurements of the source. The observed flux variability sets for the first time constraints on the size of the region from which VHE gamma rays are emitted. We model the broadband SED in the framework of the external Compton scenario and discuss the possible emission site in view of multiwavelength data and alternative emission models.
The flat spectrum radio quasar (FSRQ) PKS 1510-089 (z=0.361) is known for its complex multiwavelength behavior. It has been monitored regularly at very high energy (VHE, $E>100,$GeV) gamma-rays with H.E.S.S. since its discovery in 2009 in order to study the unknown behavior of FSRQs in quiescence at VHE, as well as the flux evolution around flaring events. Given the expected strong cooling of electrons and the absorption of VHE emission within the broad-line region, a detection of PKS 1510-089 at VHE in a quiescent state would be an important result, implying an acceleration and emission region on scales beyond the broad-line region. The H.E.S.S. monitoring has been intensified since 2015 and is complemented by monitoring at high energy ($E>100,$MeV) gamma-rays with Fermi, at X-rays with Swift-XRT, and at optical frequencies with ATOM. The dense lightcurves allow for the first time detailed comparison studies between these energy bands. The source has been active in several frequency bands for a large fraction of the observation time frames. Yet, we do not find obvious correlations between the VHE and the other bands over the observed time frame indicating a non-trivial interplay of the acceleration, cooling and radiative processes. It also implies a rich variety in flaring behavior, which makes this source difficult to interpret within a unique theoretical framework.
The blazar PKS 1510-089 was the first of the flat spectrum radio quasar type, which had been detected simultaneously by a ground based Cherenkov telescope (H.E.S.S.) and the LAT instrument on board the Fermi satellite. Given the strong broad line region emission defining this blazar class, and the resulting high optical depth for VHE ($E>100,$GeV) $gamma$-rays, it was surprising to detect VHE emission from such an object. In May 2015, PKS 1510-089 exhibited high states throughout the electromagnetic spectrum. Target of Opportunity observations with the H.E.S.S. experiment revealed strong and unprecedented variability of this source. Comparison with the lightcurves obtained with the textit{Fermi}-LAT in HE $gamma$-rays ($100,$MeV$<E<100,$GeV) and ATOM in the optical band shows a complex relationship between these energy bands. This points to a complex structure of the emission region, since the one-zone model has difficulties to reproduce the source behavior even when taking into account absorption by ambient soft photon fields. It will be shown that the presented results have important consequences for the explanation of FSRQ spectra and lightcurves, since the emission region cannot be located deep inside the broad line region as is typically assumed. Additionally, acceleration and cooling processes must be strongly time-dependent in order to account for the observed variability patterns.
We investigate the radio and gamma-ray variability of the flat spectrum radio quasar PKS 1510-089 in the time range between 2010 November and 2012 January. In this period the source showed an intense activity, with two major gamma-ray flares detected in 2011 July and October. During the latter episode both the gamma-ray and the radio flux density reached their historical peak. Multiwavelength analysis shows a rotation of about 380 deg of the optical polarization angle close in time with the rapid and strong gamma-ray flare in 2011 July. An enhancement of the optical emission and an increase of the fractional polarization both in the optical and in radio bands is observed about three weeks later, close in time with another gamma-ray outburst. On the other hand, after 2011 September a huge radio outburst has been detected, first in the millimeter regime followed with some time delay at centimeter down to decimeter wavelengths. This radio flare is characterized by a rising and a decaying stage, in agreement with the formation of a shock and its evolution, as a consequence of expansion and radiative cooling. If the gamma-ray flare observed in 2011 October is related to this radio outburst, then this strongly indicates that the region responsible for the gamma-ray variability is not within the broad line, but a few parsecs downstream along the jet.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا