Do you want to publish a course? Click here

RKKY coupling in Weyl semimetal thin films

82   0   0.0 ( 0 )
 Added by Arijit Kundu
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider the effective coupling between impurity spins on surfaces of a thin-film Weyl semimetal within Ruderman-Kittel-Kasuya-Yoshida (RKKY) theory. If the spins are on the same surface, their coupling reflects the anisotropy and the spin-momentum locking of the Fermi arcs. By contrast when the spins are on opposite surfaces, their coupling is mediated by the Fermi arcs as well as by bulk states. In this case the coupling is both surprisingly strong and strongly thickness dependent, with a maximum at an optimum thickness. We demonstrate our results using analytical solutions of states in the thin-film geometry, as well using a two-surface recursive Greens function analysis of the tight-binding model.



rate research

Read More

The dynamics of itinerant electrons in topological insulator (TI) thin films is investigated using a multi-band decomposition approach. We show that the electron trajectory in the 2D film is anisotropic and confined within a characteristic region. Remarkably, the confinement and anisotropy of the electron trajectory are associated with the topological phase transition of the TI system, which can be controlled by tuning the film thickness and/or applying an in-plane magnetic field. Moreover, persistent electron wavepacket oscillation can be achieved in the TI thin film system at the phase transition point, which may assist in the experimental detection of the jitter motion (Zitterbewegung). The implications of the microscopic picture of electron motion in explaining other transport-related effects, e.g., electron-mediated RKKY coupling in the TI thin film system, are also discussed.
The magneto-thermoelectric properties of Heusler compound thin films are very diverse. Here, we discuss the anomalous Nernst response of Co$_2$MnGa thin films. We systematically study the anomalous Nernst coefficient as a function of temperature, and we show that unlike the anomalous Hall effect, the anomalous Nernst effect in Co$_2$MnGa strongly varies with temperature. We exploit the on-chip thermometry technique to quantify the thermal gradient, which enables us to directly evaluate the anomalous Nernst coefficient. We compare these results to a reference CoFeB thin film. We show that the 50-nm-thick Co$_2$MnGa films exhibit a large anomalous Nernst effect of -2$mu$V/K at 300 K, whereas the 10-nm-thick Co$_2$MnGa film exhibits a significantly smaller anomalous Nernst coefficient despite having similar volume magnetizations. These findings suggest that the microscopic origin of the anomalous Nernst effect in Co$_2$MnGa is complex and may contain contributions from skew-scattering, side-jump or intrinsic Berry phase. In any case, the large anomalous Nernst coefficent of Co$_2$MnGa thin films at room temperature makes this material system a very promising candidate for efficient spin-caloritronic devices.
Weyl Semimetals (WSMs), a recently discovered topological state of matter, exhibit an electronic structure governed by linear band dispersions and degeneracy (Weyl) points leading to rich physical phenomena, which are yet to be exploited in thin film devices. While WSMs were established in the monopnictide compound family several years ago, the growth of thin films has remained a challenge. Here, we report the growth of epitaxial thin films of NbP and TaP by means of molecular beam epitaxy. Single crystalline films are grown on MgO (001) substrates using thin Nb (Ta) buffer layers, and are found to be tensile strained (1%) and with slightly P-rich stoichiometry with respect to the bulk crystals. The resulting electronic structure exhibits topological surface states characteristic of a P-terminated surface and linear dispersion bands in agreement with the calculated band structure, and a Fermi-level shift of -0.2 eV with respect to the Weyl points. Consequently, the electronic transport is dominated by both holes and electrons with carrier mobilities close to 10^3 cm2/Vs at room-temperature. The growth of epitaxial thin films opens up the use of strain and controlled doping to access and tune the electronic structure of Weyl Semimetals on demand, paving the way for the rational design and fabrication of electronic devices ruled by topology.
Topological semimetals have been at the forefront of experimental and theoretical attention in condensed matter physics. Among these, recently discovered Weyl semimetals have a dispersion described by a three-dimensional Dirac cone, which is at the root of exotic physics such as the chiral anomaly in magnetotransport. In a time reversal symmetric (TRS) Weyl semimetal film, the confinement gap gives the quasiparticles a mass, while TRS is preserved by having an even number of valleys with opposite masses. The film can be tuned through a topological phase transition by a gate electric field. In this work, we present a theoretical study of the quantum corrections to the conductivity of a topological semimetal thin film, which is governed by the complex interplay of the chiral band structure, mass term, and scalar and spin-orbit scattering. We study scalar and spin-orbit scattering mechanisms on the same footing, demonstrating that they have a strong qualitative and quantitative impact on the conductivity correction. We show that, due to the spin structure of the matrix Greens functions, terms linear in the extrinsic spin-orbit scattering are present in the Bloch and momentum relaxation times, whereas previous works had identified corrections starting from the second order. In the limit of small quasiparticle mass, the terms linear in the impurity spin-orbit coupling lead to a potentially observable density dependence in the weak antilocalization correction. Moreover, when the mass term is around 30 percent of the linear Dirac terms, the system is in the unitary symmetry class with zero quantum correction and switching the extrinsic spin-orbit scattering drives the system to the weak antilocalization. We discuss the crossover between the weak localization and weak antilocalization regimes in terms of the singlet and triplet Cooperon channels, tuning the spin-orbit scattering strength.
The Fermi surface of a conventional two-dimensional electron gas is equivalent to a circle, up to smooth deformations that preserve the orientation of the equi-energy contour. Here we show that a Weyl semimetal confined to a thin film with an in-plane magnetization and broken spatial inversion symmetry can have a topologically distinct Fermi surface that is twisted into a $mbox{figure-8}$ $-$ opposite orientations are coupled at a crossing which is protected up to an exponentially small gap. The twisted spectral response to a perpendicular magnetic field $B$ is distinct from that of a deformed Fermi circle, because the two lobes of a mbox{figure-8} cyclotron orbit give opposite contributions to the Aharonov-Bohm phase. The magnetic edge channels come in two counterpropagating types, a wide channel of width $beta l_m^2propto 1/B$ and a narrow channel of width $l_mpropto 1/sqrt B$ (with $l_m=sqrt{hbar/eB}$ the magnetic length and $beta$ the momentum separation of the Weyl points). Only one of the two is transmitted into a metallic contact, providing unique magnetotransport signatures.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا