Do you want to publish a course? Click here

The study of intrinsic defect state of FeSe with scanning tunneling microscopy

431   0   0.0 ( 0 )
 Added by Kunliang Bu
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We apply high resolution scanning tunneling microscopy to study intrinsic defect states of bulk FeSe. Four types of intrinsic defects including the type I dumbbell, type II dumbbell, top-layer Se vacancy and inner-layer Se-site defect are extensively analyzed by scanning tunneling spectroscopy. From characterized depression and enhancement of density of states measured in a large energy range, the type I dumbbell and type II dumbbell are determined to be the Fe vacancy and Se$_mathrm{Fe}$ defect, respectively. The top-layer Se vacancy and possible inner-layer Se-site vacancy are also determined by spectroscopy analysis. The determination of defects are compared and largely confirmed in the annular dark-field scanning transmission electron microscopy measurement of the exfoliated FeSe. The detailed mapping of defect states in our experiment lays the foundation for a comparison with complex theoretical calculations in the future.



rate research

Read More

We present very low temperature (0.15 K) scanning tunneling microscopy and spectroscopy experiments in the layered superconductor LaSb$_2$. We obtain topographic microscopy images with surfaces showing hexagonal and square atomic size patterns, and observe in the tunneling conductance a superconducting gap. We find well defined quasiparticle peaks located at a bias voltage comparable to the weak coupling s-wave BCS expected gap value (0.17 meV). The amount of states at the Fermi level is however large and the curves are significantly broadened. We find T$_c$ of 1.2 K by following the tunneling conductance with temperature.
We present a microscopic investigation of frequently observed impurity-induced states in stoichiometric LiFeAs using low temperature scanning tunneling microscopy and spectroscopy (STM/STS). Our data reveal seven distinct well defined defects which are discernible in topographic measurements. Depending on their local topographic symmetry, we are able to assign five defect types to specific lattice sites at the Li, Fe and As positions. The most prominent result is that two different defect types have a remarkably different impact on the superconducting state. A specific and quite abundant Fe-defect with $D_2$-symmetry generates significant impurity-induced additional states primarily at positive bias voltage with pronounced peaks in the on-site local density of states (LDOS) at about 4~mV and 12~mV. On the other hand, a $D_4$-symmetric As-defect causes a significantly enhanced LDOS at both positive and negative bias voltages. We expect that these findings provide fresh input for further experimental and theoretical studies on elucidating the nature of superconductivity in LiFeAs.
We consider the problem of local tunneling into cuprate superconductors, combining model based calculations for the superconducting order parameter with wavefunction information obtained from first principles electronic structure. For some time it has been proposed that scanning tunneling microscopy (STM) spectra do not reflect the properties of the superconducting layer in the CuO$_2$ plane directly beneath the STM tip, but rather a weighted sum of spatially proximate states determined by the details of the tunneling process. These filter ideas have been countered with the argument that similar conductance patterns have been seen around impurities and charge ordered states in systems with atomically quite different barrier layers. Here we use a recently developed Wannier function based method to calculate topographies, spectra, conductance maps and normalized conductance maps close to impurities. We find that it is the local planar Cu $d_{x^2-y^2}$ Wannier function, qualitatively similar for many systems, that controls the form of the tunneling spectrum and the spatial patterns near perturbations. We explain how, despite the fact that STM observables depend on the materials-specific details of the tunneling process and setup parameters, there is an overall universality in the qualitative features of conductance spectra. In particular, we discuss why STM results on Bi$_2$Sr$_2$CaCu$_2$O$_8$ and Ca$_{2-x}$Na$_x$CuO$_2$Cl$_2$ are essentially identical.
The discovery of high temperature superconductivity in La[O1-xFx]FeAs at the beginning of this year [1] has generated much excitement and has led to the rapid discovery of similar compounds with as high as 55 K transition temperatures [2]. The high superconducting transition temperatures are seemingly incompatible with the electron-phonon driven pairing of conventional superconductors, resulting in wide speculation as to the mechanism and nature of the superconductivity in these materials. Here we report results of the first scanning tunneling microscopy study of the 32 K superconductor (Sr1-xKx)Fe2As2. We find two distinct topographic regions on the sample, one with no apparent atomic corrugation, and another marked by a stripe-like modulation at double the atomic periodicity. In the latter the stripes appear to modulate the local density of states, occasionally revealing a Delta = 10 mV gap with a shape consistent with unconventional (non-s wave) superconductivity.
The IrTe2 transition metal dichalcogenide undergoes a series of structural and electronic phase transitions when doped with Pt. The nature of each phase and the mechanism of the phase transitions have attracted much attention. In this paper, we report scanning tunneling microscopy and spectroscopy studies of Pt doped IrTe2 with varied Pt contents. In pure IrTe2, we find that the ground state has a 1/6 superstructure, and the electronic structure is inconsistent with Fermi surface nesting induced charge density wave order. Upon Pt doping, the crystal structure changes to a 1/5 superstructure and then to a quasi-periodic hexagonal phase. First principles calculations show that the superstructures and electronic structures are determined by the global chemical strain and local impurity states that can be tuned systematically by Pt doping.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا