Do you want to publish a course? Click here

Universality of scanning tunneling microscopy in cuprate superconductors

198   0   0.0 ( 0 )
 Added by Peayush Choubey
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider the problem of local tunneling into cuprate superconductors, combining model based calculations for the superconducting order parameter with wavefunction information obtained from first principles electronic structure. For some time it has been proposed that scanning tunneling microscopy (STM) spectra do not reflect the properties of the superconducting layer in the CuO$_2$ plane directly beneath the STM tip, but rather a weighted sum of spatially proximate states determined by the details of the tunneling process. These filter ideas have been countered with the argument that similar conductance patterns have been seen around impurities and charge ordered states in systems with atomically quite different barrier layers. Here we use a recently developed Wannier function based method to calculate topographies, spectra, conductance maps and normalized conductance maps close to impurities. We find that it is the local planar Cu $d_{x^2-y^2}$ Wannier function, qualitatively similar for many systems, that controls the form of the tunneling spectrum and the spatial patterns near perturbations. We explain how, despite the fact that STM observables depend on the materials-specific details of the tunneling process and setup parameters, there is an overall universality in the qualitative features of conductance spectra. In particular, we discuss why STM results on Bi$_2$Sr$_2$CaCu$_2$O$_8$ and Ca$_{2-x}$Na$_x$CuO$_2$Cl$_2$ are essentially identical.



rate research

Read More

Quasiparticle tunneling spectra of both hole-doped (p-type) and electron-doped (n-type) cuprates are studied using a low-temperature scanning tunneling microscope. The results reveal that neither the pairing symmetry nor the pseudogap phenomenon is universal among all cuprates, and that the response of n-type cuprates to quantum impurities is drastically different from that of the p-type cuprates. The only ubiquitous features among all cuprates appear to be the strong electronic correlation and the nearest-neighbor antiferromagnetic Cu^{2+}-Cu^{2+} coupling in the CuO_2 planes.
132 - Jennifer E. Hoffman 2012
In the first three years since the discovery of Fe-based high Tc superconductors, scanning tunneling microscopy (STM) and spectroscopy have shed light on three important questions. First, STM has demonstrated the complexity of the pairing symmetry in Fe-based materials. Phase-sensitive quasiparticle interference (QPI) imaging and low temperature spectroscopy have shown that the pairing order parameter varies from nodal to nodeless spm within a single family, FeTe1-xSex. Second, STM has imaged C4 -> C2 symmetry breaking in the electronic states of both parent and superconducting materials. As a local probe, STM is in a strong position to understand the interactions between these broken symmetry states and superconductivity. Finally, STM has been used to image the vortex state, giving insights into the technical problem of vortex pinning, and the fundamental problem of the competing states introduced when superconductivity is locally quenched by a magnetic field. Here we give a pedagogical introduction to STM and QPI imaging, discuss the specific challenges associated with extracting bulk properties from the study of surfaces, and report on progress made in understanding Fe-based superconductors using STM techniques.
Recent scanning tunneling microscopy (STM) observation of U-shaped and V-shaped spectra (and their mixture) in superconducting Nd$_{1-x}$Sr$_x$NiO$_2$ thin films has been interpreted as presence of two distinct gap symmetries in this nickelate superconductor [Gu et al., Nat. Comm. 11, 6027 (2020)]. Here, using a two-band model of nickelates capturing dominant contributions from Ni-$3d_{x^2-y^2}$ and rare-earth (R)-$5d_{3z^2 - r^2}$ orbitals, we show that the experimental observation can be simply explained within a pairing scenario characterized by a conventional $d_{x^2-y^2}$-wave gap structure with lowest harmonic on the Ni-band and a $d_{x^2-y^2}$-wave gap with higher-harmonics on the R-band. We perform realistic simulations of STM spectra employing first-principles Wannier functions to properly account for the tunneling processes and obtain V, U, and mixed spectral line-shapes depending on the position of the STM tip within the unit cell. The V- and U-shaped spectra are contributed from Ni and R-bands, respectively, and Wannier functions, in essence, provide position-dependent weighing factors, determining the spectral line-shape at a given intra-unit cell position. We propose a phase-sensitive experiment to distinguish between the proposed $d$-wave gap structure and time-reversal symmetry breaking $d+is$ gap which yields very similar intra-unit cell spectra.
The oxygen dopants are essential in tuning electronic properties of Bi$_2$Sr$_2$Ca$_{n-1}$Cu$_n$O$_{2n+4+delta}$ superconductors. Here we apply the technique of scanning tunneling microscopy and spectroscopy to study the influence of oxygen dopants in an optimally doped Bi$_2$Sr$_{2-x}$La$_x$CuO$_{6+delta}$ and an overdoped Bi$_{2-y}$Pb$_y$Sr$_2$CuO$_{6+delta}$. In both samples, we find that interstitial oxygen atoms on the SrO layers dominate over the other two forms of oxygen dopants, oxygen vacancies on the SrO layers and interstitial oxygen atoms on the BiO layers. The hole doping is estimated from the oxygen concentration, as compared to the result extracted from the measured Fermi surface. The precise spatial location is employed to obtain a negative correlation between the oxygen dopants and the inhomogeneous pseudogap.
We present very low temperature (0.15 K) scanning tunneling microscopy and spectroscopy experiments in the layered superconductor LaSb$_2$. We obtain topographic microscopy images with surfaces showing hexagonal and square atomic size patterns, and observe in the tunneling conductance a superconducting gap. We find well defined quasiparticle peaks located at a bias voltage comparable to the weak coupling s-wave BCS expected gap value (0.17 meV). The amount of states at the Fermi level is however large and the curves are significantly broadened. We find T$_c$ of 1.2 K by following the tunneling conductance with temperature.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا