No Arabic abstract
We numerically study the Rayleigh-Benard (RB) convection in two-dimensional model emulsions confined between two parallel walls at fixed temperatures. The systems under study are heterogeneous, with finite-size droplets dispersed in a continuous phase. The droplet concentration is chosen to explore the convective heat transfer of both Newtonian (low droplet concentration) and non-Newtonian (high droplet concentration) emulsions, the latter exhibiting shear-thinning rheology, with a noticeable increase of viscosity at low shear rates. It is well known that the transition to convection of a homogeneous Newtonian system is accompanied by the onset of steady flow and time-independent heat flux; in marked contrast, the heterogeneity of emulsions brings in an additional and previously unexplored phenomenology. As a matter of fact, when the droplet concentration increases, we observe that the heat transfer process is mediated by a non-steady flow, with neat heat-flux fluctuations, obeying a non-Gaussian statistics. The observed findings are ascribed to the emergence of space correlations among distant droplets, which we highlight via direct measurements of the droplets displacement and the characterisation of the associated correlation functions.
We present mesoscale numerical simulations of Rayleigh-Benard (RB) convection in a two-dimensional model emulsion. The systems under study are constituted of finite-size droplets, whose concentration Phi_0 is systematically varied from small (Newtonian emulsions) to large values (non-Newtonian emulsions). We focus on the characterisation of the heat transfer properties close to the transition from conductive to convective states, where it is known that a homogeneous Newtonian system exhibits a steady flow and a time-independent heat flux. In marked contrast, emulsions exhibit a non-steady dynamics with fluctuations in the heat flux. In this paper, we aim at the characterisation of such non-steady dynamics via detailed studies on the time-averaged heat flux and its fluctuations. To understand the time-averaged heat flux, we propose a side-by-side comparison between the emulsion system and a single-phase (SP) system, whose viscosity is constructed from the shear rheology of the emulsion. We show that such local closure works well only when a suitable degree of coarse-graining (at the droplet scale) is introduced in the local viscosity. To delve deeper into the fluctuations in the heat flux, we propose a side-by-side comparison between a Newtonian emulsion and a non-Newtonian emulsion, at fixed time-averaged heat flux. This comparison elucidates that finite-size droplets and the non-Newtonian rheology cooperate to trigger enhanced heat-flux fluctuations at the droplet scales. These enhanced fluctuations are rooted in the emergence of space correlations among distant droplets, which we highlight via direct measurements of the droplets displacement and the characterisation of the associated correlation function. The observed findings offer insights on heat transfer properties for confined systems possessing finite-size constituents.
We present an effective thermal open boundary condition for convective heat transfer problems on domains involving outflow/open boundaries. This boundary condition is energy-stable, and it ensures that the contribution of the open boundary will not cause an ``energy-like temperature functional to increase over time, irrespective of the state of flow on the open boundary. It is effective in coping with thermal open boundaries even in flow regimes where strong vortices or backflows are prevalent on such boundaries, and it is straightforward to implement. Extensive numerical simulations are presented to demonstrate the stability and effectiveness of our method for heat transfer problems with strong vortices and backflows occurring on the open boundaries. Simulation results are compared with previous works to demonstrate the accuracy of the presented method.
Rayleigh instability that results in the breakup of a charged droplet, levitated in a quadrupole trap, has been investigated in the literature, but only scarcely. We report here asymmetric breakup of a charged drop, levitated in a loose trap, wherein, the droplet is stabilized at an off-center location in the trap. This aspect of levitation leads to an asymmetric breakup of the charged drop, predominantly in a direction opposite to that of gravity. In a first of its kind of study, we capture the successive events of the droplet deformation, breakup and relaxation of the drop after jet ejection using high speed imaging at a couple of hundred thousand frames per second. A pertinent question of the effect of the electrodynamic trap parameters such as applied voltage as well as physical parameters such as the size of the drop, gravity and conductivity on the characteristics of droplet breakup is also explored. A clear effect of the trap strength on the deformation (both symmetric and asymmetric) is observed. Moreover, the cone angle at the pole undergoing asymmetric breakup is almost independent of the applied field investigated in the experiments. All the experimental observations are compared with numerical simulations carried out using the boundary element method (BEM) in the Stokes flow limit. The BEM simulations are also extended to other experimentally achievable parameters. It is observed that the breakup is mostly field influenced, and not field induced. A plausible theory for the observations is reported, and a sensitive role of the sign of the charge on the droplet and the sign of the end cap potential, as well as the off-center location of the droplet in the trap.
To understand the behavior of composite fluid particles such as nucleated cells and double-emulsions in flow, we study a finite-size particle encapsulated in a deforming droplet under shear flow as a model system. In addition to its concentric particle-droplet configuration, we numerically explore other eccentric and time-periodic equilibrium solutions, which emerge spontaneously via supercritical pitchfork and Hopf bifurcations. We present the loci of these solutions around the codimenstion-two point. We adopt a dynamical system approach to model and characterize the coupled behavior of the two bifurcations. By exploring the flow fields and hydrodynamic forces in detail, we identify the role of hydrodynamic particle-droplet interaction which gives rise to these bifurcations.
A liquid droplet, immersed into a Newtonian fluid, can be propelled solely by internal flow. In a simple model, this flow is generated by a collection of point forces, which represent externally actuated devices or model autonomous swimmers. We work out the general framework to compute the self-propulsion of the droplet as a function of the actuating forces and their positions within the droplet. A single point force, F with general orientation and position, r_0, gives rise to both, translational and rotational motion of the droplet. We show that the translational mobility is anisotropic and the rotational mobility can be nonmonotonic as a function of | r_0|, depending on the viscosity contrast. Due to the linearity of the Stokes equation, superposition can be used to discuss more complex arrays of point forces. We analyse force dipoles, such as a stresslet, a simple model of a biflagellate swimmer and a rotlet, representing a helical swimmer, driven by an external magnetic field. For a general force distribution with arbitrary high multipole moments the propulsion properties of the droplet depend only on a few low order multipoles: up to the quadrupole for translational and up to a special octopole for rotational motion. The coupled motion of droplet and device is discussed for a few exemplary cases. We show in particular that a biflagellate swimmer, modeled as a stresslet, achieves a steady comoving state, where the position of the device relative to the droplet remains fixed. In fact there are two fixpoints, symmetric with respect to the center of the droplet. A tiny external force selects one of them and allows to switch between forward and backward motion.