No Arabic abstract
We analyze a dynamics of ultracold neutrons (UCNs) caused by interactions violating Lorentz invariance within the Standard Model Extension (SME) (Colladay and Kostelecky, Phys. Rev. D55, 6760 (1997) and Kostelecky, Phys. Rev. D69, 105009 (2004)). We use the effective non-relativistic potential for interactions violating Lorentz invariance derived by Kostelecky and Lane (J. Math. Phys. 40, 6245 (1999)) and calculate contributions of these interactions to the transition frequencies of transitions between quantum gravitational states of UCNs bouncing in the gravitational field of the Earth. Using the experimental sensitivity of qBounce experiments we make some estimates of upper bounds of parameters of Lorentz invariance violation in the neutron sector of the SME which can serve as a theoretical basis for an experimental analysis. We show that an experimental analysis of transition frequencies of transitions between quantum gravitational states of unpolarized and polarized UCNs should allow to place some new constraints in comparison to the results adduced by Kostelecky and Russell in Rev. Mod. Phys. 83, 11 (2011); edition 2019, arXiv: 0801.0287v12 [hep-ph].
Lorentz and CPT invariance are among the symmetries that can be investigated with ultrahigh precision in subatomic physics. Being spacetime symmetries, Lorentz and CPT invariance can be violated by minuscule amounts in many theoretical approaches to underlying physics that involve novel spacetime concepts, such as quantiz
The assumption of Lorentz invariance is one of the founding principles of Modern Physics and violation of it would have profound implications to our understanding of the universe. For instance, certain theories attempting a unified theory of quantum gravity predict there could be an effective refractive index of the vacuum; the introduction of an energy dependent dispersion to photons could in turn lead to an observable Lorentz invariance violation signature. Whilst a very small effect on local scales the effect will be cumulative, and so for very high energy particles that travel very large distances the difference in arrival times could become sufficiently large to be detectable. This proceedings will look at testing for such Lorentz invariance violation (LIV) signatures in the astronomical lightcurves of gamma-ray emitting objects, with particular notice being given to the prospects for LIV testing with, the next generation observatory, the Cherenkov Telescope Array.
In this article we show the modification in the number of neutrino events ($ u_mu+bar u_mu$) caused by Lorentz Invariant Violation (LIV), $sigma=5times 10^{-24}$ and $10^{-23}$, in neutrino oscillation for a neutrino factory at a distance of 7500 km. The momentum of the muons can vary from 10-50 GeV and we consider $2times 10^{20}$ decays per year. The modifications in the number of events caused by this $sigma$ LIV parameter could be a strong signal of new physics in a future neutrino factory.
A clock comparison experiment, analyzing the ratio of spin precession frequencies of stored ultracold neutrons and $^{199}$Hg atoms is reported. %57 No daily variation of this ratio could be found, from which is set an upper limit on the Lorentz invariance violating cosmic anisotropy field $b_{bot} < 2 times 10^{-20} {rm eV}$ (95% C.L.). This is the first limit for the free neutron. This result is also interpreted as a direct limit on the gravitational dipole moment of the neutron $|g_n| < 0.3 $eV/$c^2$ m from a spin-dependent interaction with the Sun. Analyzing the gravitational interaction with the Earth, based on previous data, yields a more stringent limit $|g_n| < 3 times 10^{-4} $eV/$c^2 $m.
In this work, we compute some phenomenological bounds for the electromagnetic and massive gravitational high-derivative extensions supposing that it is possible to have an astrophysical process that generates simultaneously gravitational and electromagnetic waves. We present Lorentz invariance violating (LIV) higher-order derivative models, following the Myers-Pospelov approach, to electrodynamics and massive gravitational waves. We compute the corrected equation of motion of these models, their dispersion relations and the velocities. The LIV parameters for the gravitational and electromagnetic sectors, $xi_{g}$ and $xi_{gamma}$, respectively, were also obtained for three different approaches: luminal photons, time delay of flight and the difference of graviton and photon velocities. These LIV parameters depend on the mass scales where the LIV-terms become relevant, $M$ for the electromagnetic sector and $M_{1}$ for the gravitational one. We obtain, using the values for $M$ and $M_{1}$ found in the literature, that $xi_{g}sim10^{-2}$, which is expected to be phenomenologically relevant and $xi_{gamma}sim10^{3}$, which cannot be suitable for an effective LIV theory. However, we show that $xi_{gamma}$ can be interesting in a phenomenological point of view if $Mgg M_{1}$. Finally the relation between the variation of the velocities of the photon and the graviton in relation to the speed of light was calculated and resulted in $Delta v_{g}/Delta v_{gamma}lesssim1.82times 10^{-3}$.