Do you want to publish a course? Click here

Lorentz invariance violation and simultaneous emission of electromagnetic and gravitational waves

97   0   0.0 ( 0 )
 Added by Francisco A. Brito
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this work, we compute some phenomenological bounds for the electromagnetic and massive gravitational high-derivative extensions supposing that it is possible to have an astrophysical process that generates simultaneously gravitational and electromagnetic waves. We present Lorentz invariance violating (LIV) higher-order derivative models, following the Myers-Pospelov approach, to electrodynamics and massive gravitational waves. We compute the corrected equation of motion of these models, their dispersion relations and the velocities. The LIV parameters for the gravitational and electromagnetic sectors, $xi_{g}$ and $xi_{gamma}$, respectively, were also obtained for three different approaches: luminal photons, time delay of flight and the difference of graviton and photon velocities. These LIV parameters depend on the mass scales where the LIV-terms become relevant, $M$ for the electromagnetic sector and $M_{1}$ for the gravitational one. We obtain, using the values for $M$ and $M_{1}$ found in the literature, that $xi_{g}sim10^{-2}$, which is expected to be phenomenologically relevant and $xi_{gamma}sim10^{3}$, which cannot be suitable for an effective LIV theory. However, we show that $xi_{gamma}$ can be interesting in a phenomenological point of view if $Mgg M_{1}$. Finally the relation between the variation of the velocities of the photon and the graviton in relation to the speed of light was calculated and resulted in $Delta v_{g}/Delta v_{gamma}lesssim1.82times 10^{-3}$.



rate research

Read More

186 - Alan Kostelecky , Neil Russell , 2012
Bipartite Riemann-Finsler geometries with complementary Finsler structures are constructed. Calculable examples are presented based on a bilinear-form coefficient for explicit Lorentz violation.
166 - Michael Daniel 2015
The assumption of Lorentz invariance is one of the founding principles of Modern Physics and violation of it would have profound implications to our understanding of the universe. For instance, certain theories attempting a unified theory of quantum gravity predict there could be an effective refractive index of the vacuum; the introduction of an energy dependent dispersion to photons could in turn lead to an observable Lorentz invariance violation signature. Whilst a very small effect on local scales the effect will be cumulative, and so for very high energy particles that travel very large distances the difference in arrival times could become sufficiently large to be detectable. This proceedings will look at testing for such Lorentz invariance violation (LIV) signatures in the astronomical lightcurves of gamma-ray emitting objects, with particular notice being given to the prospects for LIV testing with, the next generation observatory, the Cherenkov Telescope Array.
441 - S. T. Scully 2009
There has been much interest in possible violations of Lorentz invariance, particularly motivated by quantum gravity theories. It has been suggested that a small amount of Lorentz invariance violation (LIV) could turn off photomeson interactions of ultrahigh energy cosmic rays (UHECRs) with photons of the cosmic background radiation and thereby eliminate the resulting sharp steepening in the spectrum of the highest energy CRs predicted by Greisen Zatsepin and Kuzmin (GZK). Recent measurements of the UHECR spectrum reported by the HiRes and Auger collaborations, however, indicate the presence of the GZK effect. We present the results of a detailed calculation of the modification of the UHECR spectrum caused by LIV using the formalism of Coleman and Glashow. We then compare these results with the experimental UHECR data from Auger and HiRes. Based on these data, we find a best fit amount of LIV of $4.5^{+1.5}_{-4.5} times 10^{-23}$,consistent with an upper limit of $6 times 10^{-23}$. This possible amount of LIV can lead to a recovery of the cosmic ray spectrum at higher energies than presently observed. Such an LIV recovery effect can be tested observationally using future detectors.
The cosmological evolution of an interacting scalar field model in which the scalar field interacts with dark matter, radiation, and baryon via Lorentz violation is investigated. We propose a model of interaction through the effective coupling $bar{beta}$. Using dynamical system analysis, we study the linear dynamics of an interacting model and show that the dynamics of critical points are completely controlled by two parameters. Some results can be mentioned as follows. Firstly, the sequence of radiation, the dark matter, and the scalar field dark energy exist and baryons are sub dominant. Secondly, the model also allows the possibility of having a universe in the phantom phase with constant potential. Thirdly, the effective gravitational constant varies with respect to time through $bar{beta}$. In particular, we consider a simple case where $bar{beta}$ has a quadratic form and has a good agreement with the modified $Lambda$CDM and quintessence models. Finally, we also calculate the first post--Newtonian parameters for our model.
175 - Ralf Lehnert 2009
The largest gap in our understanding of nature at the fundamental level is perhaps a unified description of gravity and quantum theory. Although there are currently a variety of theoretical approaches to this question, experimental research in this field is inhibited by the expected Planck-scale suppression of quantum-gravity effects. However, the breakdown of spacetime symmetries has recently been identified as a promising signal in this context: a number of models for underlying physics can accommodate minuscule Lorentz and CPT violation, and such effects are amenable to ultrahigh-precision tests. This presentation will give an overview of the subject. Topics such as motivations, the SME test framework, mechanisms for relativity breakdown, and experimental tests will be reviewed. Emphasis is given to observations involving antimatter.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا