Do you want to publish a course? Click here

An Algorithm for Out-Of-Distribution Attack to Neural Network Encoder

85   0   0.0 ( 0 )
 Added by Linhai Ma
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Deep neural networks (DNNs), especially convolutional neural networks, have achieved superior performance on image classification tasks. However, such performance is only guaranteed if the input to a trained model is similar to the training samples, i.e., the input follows the probability distribution of the training set. Out-Of-Distribution (OOD) samples do not follow the distribution of training set, and therefore the predicted class labels on OOD samples become meaningless. Classification-based methods have been proposed for OOD detection; however, in this study we show that this type of method has no theoretical guarantee and is practically breakable by our OOD Attack algorithm because of dimensionality reduction in the DNN models. We also show that Glow likelihood-based OOD detection is breakable as well.

rate research

Read More

Adversarial examples are inputs with imperceptible perturbations that easily misleading deep neural networks(DNNs). Recently, adversarial patch, with noise confined to a small and localized patch, has emerged for its easy feasibility in real-world scenarios. However, existing strategies failed to generate adversarial patches with strong generalization ability. In other words, the adversarial patches were input-specific and failed to attack images from all classes, especially unseen ones during training. To address the problem, this paper proposes a bias-based framework to generate class-agnostic universal adversarial patches with strong generalization ability, which exploits both the perceptual and semantic bias of models. Regarding the perceptual bias, since DNNs are strongly biased towards textures, we exploit the hard examples which convey strong model uncertainties and extract a textural patch prior from them by adopting the style similarities. The patch prior is more close to decision boundaries and would promote attacks. To further alleviate the heavy dependency on large amounts of data in training universal attacks, we further exploit the semantic bias. As the class-wise preference, prototypes are introduced and pursued by maximizing the multi-class margin to help universal training. Taking AutomaticCheck-out (ACO) as the typical scenario, extensive experiments including white-box and black-box settings in both digital-world(RPC, the largest ACO related dataset) and physical-world scenario(Taobao and JD, the world s largest online shopping platforms) are conducted. Experimental results demonstrate that our proposed framework outperforms state-of-the-art adversarial patch attack methods.
Multi-view stereopsis (MVS) tries to recover the 3D model from 2D images. As the observations become sparser, the significant 3D information loss makes the MVS problem more challenging. Instead of only focusing on densely sampled conditions, we investigate sparse-MVS with large baseline angles since the sparser sensation is more practical and more cost-efficient. By investigating various observation sparsities, we show that the classical depth-fusion pipeline becomes powerless for the case with a larger baseline angle that worsens the photo-consistency check. As another line of the solution, we present SurfaceNet+, a volumetric method to handle the incompleteness and the inaccuracy problems induced by a very sparse MVS setup. Specifically, the former problem is handled by a novel volume-wise view selection approach. It owns superiority in selecting valid views while discarding invalid occluded views by considering the geometric prior. Furthermore, the latter problem is handled via a multi-scale strategy that consequently refines the recovered geometry around the region with the repeating pattern. The experiments demonstrate the tremendous performance gap between SurfaceNet+ and state-of-the-art methods in terms of precision and recall. Under the extreme sparse-MVS settings in two datasets, where existing methods can only return very few points, SurfaceNet+ still works as well as in the dense MVS setting. The benchmark and the implementation are publicly available at https://github.com/mjiUST/SurfaceNet-plus.
We study black-box adversarial attacks for image classifiers in a constrained threat model, where adversaries can only modify a small fraction of pixels in the form of scratches on an image. We show that it is possible for adversaries to generate localized textit{adversarial scratches} that cover less than $5%$ of the pixels in an image and achieve targeted success rates of $98.77%$ and $97.20%$ on ImageNet and CIFAR-10 trained ResNet-50 models, respectively. We demonstrate that our scratches are effective under diverse shapes, such as straight lines or parabolic Baezier curves, with single or multiple colors. In an extreme condition, in which our scratches are a single color, we obtain a targeted attack success rate of $66%$ on CIFAR-10 with an order of magnitude fewer queries than comparable attacks. We successfully launch our attack against Microsofts Cognitive Services Image Captioning API and propose various mitigation strategies.
115 - Fuxun Yu , Chenchen Liu , Di Wang 2020
Convolutional Neural Networks (CNNs) achieved great cognitive performance at the expense of considerable computation load. To relieve the computation load, many optimization works are developed to reduce the model redundancy by identifying and removing insignificant model components, such as weight sparsity and filter pruning. However, these works only evaluate model components static significance with internal parameter information, ignoring their dynamic interaction with external inputs. With per-input feature activation, the model component significance can dynamically change, and thus the static methods can only achieve sub-optimal results. Therefore, we propose a dynamic CNN optimization framework in this work. Based on the neural network attention mechanism, we propose a comprehensive dynamic optimization framework including (1) testing-phase channel and column feature map pruning, as well as (2) training-phase optimization by targeted dropout. Such a dynamic optimization framework has several benefits: (1) First, it can accurately identify and aggressively remove per-input feature redundancy with considering the model-input interaction; (2) Meanwhile, it can maximally remove the feature map redundancy in various dimensions thanks to the multi-dimension flexibility; (3) The training-testing co-optimization favors the dynamic pruning and helps maintain the model accuracy even with very high feature pruning ratio. Extensive experiments show that our method could bring 37.4% to 54.5% FLOPs reduction with negligible accuracy drop on various of test networks.
Generative models are popular tools with a wide range of applications. Nevertheless, it is as vulnerable to adversarial samples as classifiers. The existing attack methods mainly focus on generating adversarial examples by adding imperceptible perturbations to input, which leads to wrong result. However, we focus on another aspect of attack, i.e., cheating models by significant changes. The former induces Type II error and the latter causes Type I error. In this paper, we propose Type I attack to generative models such as VAE and GAN. One example given in VAE is that we can change an original image significantly to a meaningless one but their reconstruction results are similar. To implement the Type I attack, we destroy the original one by increasing the distance in input space while keeping the output similar because different inputs may correspond to similar features for the property of deep neural network. Experimental results show that our attack method is effective to generate Type I adversarial examples for generative models on large-scale image datasets.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا