Do you want to publish a course? Click here

Random Sequential Adsorption of Oriented Superdisks

597   0   0.0 ( 0 )
 Added by Oleksandr Gromenko
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this work we extend recent study of the properties of the dense packing of superdisks, by Y. Jiao, F. H. Stillinger and S. Torquato, Phys. Rev. Lett. 100, 245504 (2008), to the jammed state formed by these objects in random sequential adsorption. The superdisks are two-dimensional shapes bound by the curves of the form |x|^(2p) + |y|^(2p) = 1, with p > 0. We use Monte Carlo simulations and theoretical arguments to establish that p = 1/2 is a special point at which the jamming density has a discontinuous derivative as a function of p. The existence of this point can be also argued for by geometrical arguments.



rate research

Read More

113 - Vladimir Privman , Han Yan 2016
We report a surprising result, established by numerical simulations and analytical arguments for a one-dimensional lattice model of random sequential adsorption, that even an arbitrarily small imprecision in the lattice-site localization changes the convergence to jamming from fast, exponential, to slow, power-law, with, for some parameter values, a discontinuous jump in the jamming coverage value. This finding has implications for irreversible deposition on patterned substrates with pre-made landing sites for particle attachment. We also consider a general problem of the particle (depositing object) size not an exact multiple of the lattice spacing, and the lattice sites themselves imprecise, broadened into allowed-deposition intervals. Regions of exponential vs. power-law convergence to jamming are identified, and certain conclusions regarding the jamming coverage are argued for analytically and confirmed numerically.
The random sequential adsorption (RSA) model is a classical model in Statistical Physics for adsorption on two-dimensional surfaces. Objects are deposited sequentially at random and adsorb irreversibly on the landing site, provided that they do not overlap any previously adsorbed object. The kinetics of adsorption ceases when no more objects can be adsorbed (jamming state). Here, we investigate the role of post-relaxation on the jamming state and percolation properties of RSA of dimers on a two-dimensional lattice. We consider that, if the deposited dimer partially overlaps with a previously adsorbed one, a sequence of dimer displacements may occur to accommodate the new dimer. The introduction of this simple relaxation dynamics leads to a more dense jamming state than the one obtained with RSA without relaxation. We also consider the anisotropic case, where one dimer orientation is favored over the other, finding a non-monotonic dependence of the jamming coverage on the strength of anisotropy. We find that the density of adsorbed dimers at which percolation occurs is reduced with relaxation, but the value depends on the strength of anisotropy.
We study approach to the large-time jammed state of the deposited particles in the model of random sequential adsorption. The convergence laws are usually derived from the argument of Pomeau which includes the assumption of the dominance, at large enough times, of small landing regions into each of which only a single particle can be deposited without overlapping earlier deposited particles and which, after a certain time are no longer created by depositions in larger gaps. The second assumption has been that the size distribution of gaps open for particle-center landing in this large-time small-gaps regime is finite in the limit of zero gap size. We report numerical Monte Carlo studies of a recently introduced model of random sequential adsorption on patterned one-dimensional substrates that suggest that the second assumption must be generalized. We argue that a region exists in the parameter space of the studied model in which the gap-size distribution in the Pomeau large-time regime actually linearly vanishes at zero gap sizes. In another region, the distribution develops a threshold property, i.e., there are no small gaps below a certain gap size. We discuss the implications of these findings for new asymptotic power-law and exponential-modified-by-a-power-law convergences to jamming in irreversible one-dimensional deposition.
68 - Loic Turban 2019
We study the random sequential adsorption of $k$-mers on the fully-connected lattice with $N=kn$ sites. The probability distribution $T_n(s,t)$ of the time $t$ needed to cover the lattice with $s$ $k$-mers is obtained using a generating function approach. In the low coverage scaling limit where $s,n,ttoinfty$ with $y=s/n^{1/2}={mathrm O}(1)$ the random variable $t-s$ follows a Poisson distribution with mean $ky^2/2$. In the intermediate coverage scaling limit, when both $s$ and $n-s$ are ${mathrm O}(n)$, the mean value and the variance of the covering time are growing as $n$ and the fluctuations are Gaussian. When full coverage is approached the scaling functions diverge, which is the signal of a new scaling behaviour. Indeed, when $u=n-s={mathrm O}(1)$, the mean value of the covering time grows as $n^k$ and the variance as $n^{2k}$, thus $t$ is strongly fluctuating and no longer self-averaging. In this scaling regime the fluctuations are governed, for each value of $k$, by a different extreme value distribution, indexed by $u$. Explicit results are obtained for monomers (generalized Gumbel distribution) and dimers.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا