Do you want to publish a course? Click here

New Superpotential in Conservation Laws in General Relativity

330   0   0.0 ( 0 )
 Added by Jiri Adamek
 Publication date 2016
  fields Physics
and research's language is English
 Authors J. Adamek




Ask ChatGPT about the research

This work refers to the new formula for the superpotential Uikl in conservation laws in general relativity satisfying the integral and differential conservation laws within the Schwarzschild metric. The new superpotential is composed of two terms. The first term is based on Mollers concept and its a function of the metric gik and its first derivative only. The second term is the antisymmetric tensor density of weight plus one and it consists of higher derivatives of the metric gik. Although the new superpotential consists of higher derivatives of the metric gik it might bring a new evaluation of the conservative quantities in general relativity



rate research

Read More

We study the covariant phase space of vacuum general relativity at the null boundary of causal diamonds. The past and future components of such a null boundary each have an infinite-dimensional symmetry algebra consisting of diffeomorphisms of the $2$-sphere and boost supertranslations corresponding to angle-dependent rescalings of affine parameter along the null generators. Associated to these symmetries are charges and fluxes obtained from the covariant phase space formalism using the prescription of Wald and Zoupas. By analyzing the behavior of the spacetime metric near the corners of the causal diamond, we show that the fluxes are also Hamiltonian generators of the symmetries on the phase space. In particular, the supertranslation fluxes yield an infinite family of boost Hamiltonians acting on the gravitational data of causal diamonds. We show that the smoothness of the vector fields representing such symmetries at the bifurcation edge of the causal diamond implies suitable matching conditions between the symmetries on the past and future components of the null boundary. Similarly, the smoothness of the spacetime metric implies that the fluxes of all such symmetries is conserved between the past and future components of the null boundary. This establishes an infinite set of conservation laws for finite subregions in gravity analogous to those at null infinity. We also show that the symmetry algebra at the causal diamond has a non-trivial center corresponding to constant boosts. The central charges associated to these constant boosts are proportional to the area of the bifurcation edge, for any causal diamond, in analogy with the Wald entropy formula.
82 - David Langlois IAP 2001
We consider the collision of self-gravitating n-branes in a (n+2)-dimensional spacetime. We show that there is a geometrical constraint which can be expressed as a simple sum rule for angles characterizing Lorentz boosts between branes and the intervening spacetime regions. This constraint can then be re-interpreted as either energy or momentum conservation at the collision.
The Florides solution, proposed as an alternative to the interior Schwarzschild solution, represents a static and spherically symmetric geometry with vanishing radial stresses. It is regular at the center, and is matched to an exterior Schwarzschild solution. The specific case of a constant energy density has been interpreted as the field inside an Einstein cluster. In this work, we are interested in analyzing the geometry throughout the permitted range of the radial coordinate without matching it to the Schwarzschild exterior spacetime at some constant radius hypersurface. We find an interesting picture, namely, the solution represents a three-sphere, whose equatorial two-sphere is singular, in the sense that the curvature invariants and the tangential pressure diverge. As far as we know, such singularities have not been discussed before. In the presence of a large negative cosmological constant (anti-de Sitter) the singularity is removed.
Spaniol and Andrade introduced grvitoelectromagnetism in TEGR by considering superpotentials, times the determinant of tetrads, as the gravitoelectromagnetic fields. However, since this defined gravitoelectromagnetic field strength does not give rise to a complete set of Maxwell-like equations, we propose an alternative definition of the gravitoelectromagnetic field strength: instead of superpotentials, torsions are taken as the gravitoelectromagnetic field strengths. Based on this new proposal we are able to derive a complete set of Maxwell-like equations. We then apply them to obtain explicit expressions of the gravitoelectromagnetic fields both in Schwarzchilds spacetime and for gravitational waves.
There have been many attempts to define the notion of quasilocal mass for a spacelike 2-surface in spacetime by the Hamilton-Jacobi analysis. The essential difficulty in this approach is to identify the right choice of the background configuration to be subtracted from the physical Hamiltonian. Quasilocal mass should be nonnegative for surfaces in general spacetime and zero for surfaces in flat spacetime. In this letter, we propose a new definition of gauge-independent quasilocal mass and prove that it has the desired properties.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا