Do you want to publish a course? Click here

Understanding the ferromagnetic insulating state in Cr doped VO$_2$

207   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Experimentally Cr doping in the rutile phase of VO$_2$ is found to stabilize a charge ordered ferromagnetic insulating state in the doping range of 10% to 20%. In this work, we investigated its origin at 12.5% Cr doping using a combination of ab-initio electronic structure calculations as well as microscopic modeling. Our calculations are found to reproduce the ferromagnetic insulating state as well as a charge ordering at the V and Cr sites. The mapping of the ab-initio band structure onto a tight-binding Hamiltonian allows one to calculate the energy gain from different exchange pathways. This gain is quantified in this work for the first time and the role of charge ordering in stabilizing a ferromagnetic insulating state is understood.



rate research

Read More

The anomalous Hall effect (AHE) is a non-linear Hall effect appearing in magnetic conductors, boosted by internal magnetism beyond what is expected from the ordinary Hall effect. With the recent discovery of the quantized version of the AHE, the quantum anomalous Hall effect (QAHE), in Cr- or V-doped topological insulator (TI) (Sb,Bi)$_2$Te$_3$ thin films, the AHE in magnetic TIs has been attracting significant interest. However, one of the puzzles in this system has been that while Cr- or V-doped (Sb,Bi)$_2$Te$_3$ and V-doped Bi$_2$Se$_3$ exhibit AHE, Cr-doped Bi$_2$Se$_3$ has failed to exhibit even ferromagnetic AHE, the expected predecessor to the QAHE, though it is the first material predicted to exhibit the QAHE. Here, we have successfully implemented ferromagnetic AHE in Cr-doped Bi$_2$Se$_3$ thin films by utilizing a surface state engineering scheme. Surprisingly, the observed ferromagnetic AHE in the Cr-doped Bi$_2$Se$_3$ thin films exhibited only positive slope regardless of the carrier type. We show that this sign problem can be explained by the intrinsic Berry curvature of the system as calculated from a tight-binding model combined with a first-principles method.
Bimetal transition iodides in two-dimensional scale provide an interesting idea to combine a set of single-transition-metal ferromagnetic semiconductors together. Motivated by structural engineering on bilayer CrI$_3$ to tune its magnetism and works that realize ideal properties by stacking van der Waals transitional metal dichalcogenides in a certain order. Here we stack monolayer VI$_3$ onto monolayer CrI$_3$ with a middle-layer I atoms discarded to construct monolayer V$_2$Cr$_2$I$_9$. Based on this crystal model, the stable and metastable phases are determined among 7 possible phases by first-principles calculations. It is illustrated that both the two phases have Curie temperature $sim$ 6 (4) times higher than monolayer CrI$_3$ and VI$_3$. The reason can be partly attributed to their large magnetic anisotropy energy (the maximum value reaches 412.9 $mu$eV/atom). More importantly, the Curie temperature shows an electric field and strain dependent character and can even surpass room temperature under a moderate strain range. At last, we believe that the bimetal transition iodide V$_2$Cr$_2$I$_9$ monolayer would support potential opportunities for spintronic devices.
142 - Stephen Y. Wu , H.X. Liu , Lin Gu 2002
We report a theoretical and experimental investigation of Cr-doped AlN. Density functional calculations predict that the isolated Cr t2 defect level in AlN is 1/3 full, falls approximately at midgap, and broadens into an impurity band for concentrations over 5%. Substitutional Al1-xCrxN random alloys with 0.05 <= x <= 0.15 are predicted to have Curie temperatures over 600 K. Experimentally, we have characterized and optimized the molecular beam epitaxy thin film growth process, and observed room temperature ferromagnetism with a coercive field, Hc, of 120 Oersted. The measured magnetic susceptibility indicates that over 33% of the Cr is magnetically active at room temperature and 40% at low temperature.
Ferromagnetic insulators (FMIs) are one of the most important components in developing dissipationless electronic and spintronic devices. However, since ferromagnetism generally accompanies metallicity, FMIs are innately rare to find in nature. Here, novel room-temperature FMI films are epitaxially synthesized by deliberate control of the ratio of two B-site cations in the double perovskite Sr2FeReO6. In contrast to the known ferromagnetic metallic phase in stoichiometric Sr2FeReO6, a FMI state with a high Curie temperature (Tc~400 K) and a large saturation magnetization (MS~1.8 {mu}B/f.u.) is found in highly cation-ordered Fe-rich phases. The stabilization of the FMI state is attributed to the formation of extra Fe3+-Fe3+ and Fe3+-Re6+ bonding states, which originate from the excess Fe. The emerging FMI state by controlling cations in the epitaxial oxide perovskites opens the door to developing novel oxide quantum materials & heterostructures.
Dedicated control of oxygen vacancies is an important route to functionalizing complex oxide films. It is well-known that tensile strain significantly lowers the oxygen vacancy formation energy, whereas compressive strain plays a minor role. Thus, atomically reconstruction by extracting oxygen from a compressive-strained film is challenging. Here we report an unexpected LaCoO2.5 phase with a zigzag-like oxygen vacancy ordering through annealing a compressive-strained LaCoO3 in vacuum. The synergetic tilt and distortion of CoO5 square pyramids with large La and Co shifts are quantified using scanning transmission electron microscopy. The large in-plane expansion of CoO5 square pyramids weaken the crystal-field splitting and facilitated the ordered high-spin state of Co2+, which produces an insulating ferromagnetic state with a Curie temperature of ~284 K and a saturation magnetization of ~0.25 {mu}B/Co. These results demonstrate that extracting targeted oxygen from a compressive-strained oxide provides an opportunity for creating unexpected crystal structures and novel functionalities.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا