Do you want to publish a course? Click here

Near-field energy transfer between a luminescent 2D material and color centers in diamond

211   0   0.0 ( 0 )
 Added by Richard Nelz
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Energy transfer between fluorescent probes lies at the heart of many applications ranging from bio-sensing and -imaging to enhanced photo-detection and light harvesting. In this work, we study Forster resonance energy transfer (FRET) between shallow defects in diamond --- nitrogen-vacancy (NV) centers --- and atomically-thin, two-dimensional materials --- tungsten diselenide (WSe$_2$). By means of fluorescence lifetime imaging, we demonstrate the occurrence of FRET in the WSe$_2$/NV system. Further, we show that in the coupled system, NV centers provide an additional excitation pathway for WSe$_2$ photoluminescence. Our results constitute the first step towards the realization of hybrid quantum systems involving single-crystal diamond and two-dimensional materials that may lead to new strategies for studying and controlling spin transfer phenomena and spin valley physics.



rate research

Read More

An efficient atom-photon-interface is a key requirement for the integration of solid-state emitters such as color centers in diamond into quantum technology applications. Just like other solid state emitters, however, their emission into free space is severely limited due to the high refractive index of the bulk host crystal. In this work, we present a planar optical antenna based on two silver mirrors coated on a thin single crystal diamond membrane, forming a planar Fabry-Perot cavity that improves the photon extraction from single tin vacancy (SnV) centers as well as their coupling to an excitation laser. Upon numerical optimization of the structure, we find theoretical enhancements in the collectible photon rate by a factor of 60 as compared to the bulk case. As a proof-of-principle demonstration, we fabricate single crystal diamond membranes with sub-$mu$m thickness and create SnV centers by ion implantation. Employing off-resonant excitation, we show a 6-fold enhancement of the collectible photon rate, yielding up to half a million photons per second from a single SnV center. At the same time, we observe a significant reduction of the required excitation power in accordance with theory, demonstrating the functionality of the cavity as an optical antenna. Due to its planar design, the antenna simultaneously provides similar enhancements for a large number of emitters inside the membrane. Furthermore, the monolithic structure provides high mechanical stability and straightforwardly enables operation under cryogenic conditions as required in most spin-photon interface implementations.
218 - A. Jarmola , A. Berzins , J. Smits 2015
We present systematic measurements of longitudinal relaxation rates ($1/T_1$) of spin polarization in the ground state of the nitrogen-vacancy (NV$^-$) color center in synthetic diamond as a function of NV$^-$ concentration and magnetic field $B$. NV$^-$ centers were created by irradiating a Type 1b single-crystal diamond along the [100] axis with 200 keV electrons from a transmission electron microscope with varying doses to achieve spots of different NV$^-$ center concentrations. Values of ($1/T_1$) were measured for each spot as a function of $B$.
Recent developments in magnetic field sensing with negatively charged nitrogen-vacancy centers (NV) in diamond employ magnetic-field (MF) dependent features in the photoluminescence (PL) and eliminate the need for microwaves (MW). Here, we study two approaches towards improving the magnetometric sensitivity using the ground-state level anti-crossing (GSLAC) feature of the NV center at a background MF of 102.4,mT. Following the first approach, we investigate the feature parameters for precise alignment in a dilute diamond sample; the second approach extends the sensing protocol into absorption via detection of the GSLAC in the diamond transmission of a 1042,nm laser beam. This leads to an increase of GSLAC contrast and results in a magnetometer with a sensitivity of 0.45,nT/$sqrt{text{Hz}}$ and a photon shot-noise limited sensitivity of 12.2 pT/$sqrt{rm{Hz}}$.
We characterize single nitrogen-vacancy (NV) centers created by 10-keV N+ ion implantation into diamond via thin SiO$_2$ layers working as screening masks. Despite the relatively high acceleration energy compared with standard ones (< 5 keV) used to create near-surface NV centers, the screening masks modify the distribution of N$^+$ ions to be peaked at the diamond surface [Ito et al., Appl. Phys. Lett. 110, 213105 (2017)]. We examine the relation between coherence times of the NV electronic spins and their depths, demonstrating that a large portion of NV centers are located within 10 nm from the surface, consistent with Monte Carlo simulations. The effect of the surface on the NV spin coherence time is evaluated through noise spectroscopy, surface topography, and X-ray photoelectron spectroscopy.
Electron and nuclear spins of diamond nitrogen-vacancy (NV) centers are good candidates for quantum information processing as they have long coherence time and can be initialized and read out optically. However, creating a large number of coherently coupled and individually addressable NV centers for quantum computing has been a big challenge. Here we propose methods to use high-density diamond NV centers coupled by spin-spin interaction with an average separation on the order of 10 nm for quantum computing. We propose to use a strain gradient to encode the position information of each NV center in the energy level of its excited electron orbital state, which causes a shift of its optical transition frequency. With such strain encoding, more than 100 closely-packed NV centers below optical diffraction limit can be read out individually by resonant optical excitation. A magnetic gradient will be used to shift the electron spin resonant (ESR) frequencies of NV centers. Therefore, the spin state of each NV center can be individually manipulated and different NV centers can be selectively coupled. A universal set of quantum operations for two-qubit and three-qubit system is introduced by careful design of external drives. Moreover, entangled states with multiple qubits can be created by this protocol, which is a major step towards quantum information processing with solid-state spins.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا